Science & Education

, Volume 21, Issue 9, pp 1337–1356 | Cite as

Conceptual Problems in the Foundations of Mechanics

  • Ricardo Lopes Coelho


There has been much research on principles and fundamental concepts of mechanics. Problems concerning the law of inertia, the concepts of force, fictitious force, weight, mass and the distinction between inertial and gravitational mass are addressed in the first part of the present paper. It is argued in the second that the law of inertia is the source of these problems. Consequences drawn from the law explain the metaphysical concept of force, the problematic concept of fictitious force, the nominal definition of weight and the difficulty with defining mass operationally. The core of this connection between the law and these consequences lies in the fact that acceleration is a sufficient condition for force. The experimental basis of the law in the course of its history shows, however, that the law presupposes acceleration necessarily whereas acceleration does not presuppose the law. Therefore, there is no inconvenience in taking acceleration independently of the law. This is enough to bypass those problems. Taking into account how force is measured by force meters and how mass is basically determined, by comparison with the standard mass, a minimal meaning for both concepts of force and mass is established. All this converges with several solutions proposed in the course of history and increases the communicability of mechanics, as outlined in the final part of this paper.


Inertial Frame Free Particle Fundamental Equation Inertial Mass Gravitational Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alonso, M., & Finn, E. J. (1992). Physics. Wokingham: Addison-Wesley.Google Scholar
  2. Ampère, A. -M. (1834). Essai sur la Philosophique des Sciences. Paris: Bachelier.Google Scholar
  3. Arons, A. B. (1990). A guide to introductory physics teaching. New York: Wiley.Google Scholar
  4. Bailin, S. (2002). Critical thinking and science education. Science & Education, 11, 361–375.CrossRefGoogle Scholar
  5. Barbour, J. B., & Pfister, H. (Eds.). (1995). Mach’s principle: From Newton’s bucket to quantum gravity, Boston, Basel: Birkhäuser.Google Scholar
  6. Becker, R. A. (1954). Introduction to theoretical mechanics. New York, London, Toronto: McGraw-Hill.Google Scholar
  7. Benenson, W., Harris, J. W., Stocker, H., & Lutz, H. (2001). Physics, (Trans. from German). New York: Springer.Google Scholar
  8. Bergmann, L., & Schaefer, C. (1990). Lehrbuch der Experimentalphysik I: Mechanik, Akustik, Wärme (10th ed.). Berlin, New York: de Gruyter.Google Scholar
  9. Bergmann, L., & Schaefer, C. (1998). Lehrbuch der Experimentalphysik I: Mechanik, Akustik, Wärme (11th ed.). Berlin, New York: de Gruyter.Google Scholar
  10. Blatt, F. J. (1989). Principles of physics (3rd ed.). Boston, London: Allyn and Bacon.Google Scholar
  11. Bliss, J., & Ogborn, J. (1994). Force and Motion from the Beginning. Learning and Instruction, 4, 7–25.CrossRefGoogle Scholar
  12. Budó, Á. (1974). Theoretische Mechanik (7th ed.). Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  13. Bueche, F. J., & Jerde, D. A. (1995). Principles of physics (6th ed.). New York: McGraw-Hill.Google Scholar
  14. Bureau international des poids et mesures (1889). Conférence générale des poids et mesures. Sèvres: Bureau international des poids et mesures.Google Scholar
  15. Carnot, L. (1803). Principes fondamentaux de l’équilibre et du mouvement, Paris: chez Deterville: de l’Imprimerie de Crapelet.Google Scholar
  16. Carson, R., & Rowlands, S. (2005). Mechanics as the logical point of entry for the enculturation into scientific thinking. Science & Education, 14, 473–493.CrossRefGoogle Scholar
  17. Coelho, R. L. (2007). The law of inertia: How understanding its history can improve physics teaching. Science & Education, 16, 955–974.CrossRefGoogle Scholar
  18. Coelho, R. L. (2010). On the concept of force: How understanding its history can improve physics teaching. Science & Education, 19, 91–113.CrossRefGoogle Scholar
  19. d’Alembert, J. (1758). Traité de Dynamique (2nd ed.). Johnson Reprint Corporation: Paris, New York, London, 1968 (rep.).Google Scholar
  20. d’ Inverno, R. (1995). Introducing Einstein’s relativity. Oxford: Oxford University Press.Google Scholar
  21. Daniel, H. (1997). Physik I: Mechanik, Wärme, de Gruyter. Berlin, New York: Wellen.Google Scholar
  22. Demtröder, W. (2008). Experimentalphysik 1: Mechanik und Wärme (5th ed.). Berlin, Heidelberg: Springer.Google Scholar
  23. Descartes, R. (1957) [1647]. Principes de la Philosophie (Paris, 1647). In Oeuvres de Descartes, Vol. IX-2, ed. by Ch. Adam and P. Tannery, Paris, 1957.Google Scholar
  24. Doménech, J. L., Gil-Pérez, D., Gras-Marti, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching energy issues: A debate proposal for a global reorientation. Science & Education, 16, 43–64.CrossRefGoogle Scholar
  25. Dransfeld, K., Kienle, P., & Kalvius, G. M. (2001). Physik I: Mechanik und Wärme (9th ed.). München: Oldenbourg.Google Scholar
  26. Einstein, A. (1913). Zum gegenwärtigen Stande des Gravitationsproblems. Physikalische Zeitschrift, 14, 1249–1262.Google Scholar
  27. Eisberg, R. M., & Lerner, L. P. (1981). Physics: Foundations and applications. Hamburg: McGraw-Hill.Google Scholar
  28. Eisenbud, L. (1958). On the classical laws of motion. American Journal of Physics, 26, 144–158.CrossRefGoogle Scholar
  29. Ellis, B. (1962). Newton’s concept of motive force. Journal of the History of Ideas, 23, 273–278.CrossRefGoogle Scholar
  30. Ellis, B. (1963). Universal and differential forces. British Journal for the Philosophy of Science, 14, 177–194.CrossRefGoogle Scholar
  31. Ellis, B. (1965). The origin and nature of Newton’s laws of motion. In R. G. Colodny (Ed.), Beyond the edge of certainty (pp. 29–68). NJ: Englewood Cliffs.Google Scholar
  32. Ellis, B. (1976). The existence of forces. Studies in History and Philosophy of Science, 7, 171–185.CrossRefGoogle Scholar
  33. Faughn, J., Serway, R., Vuille, C., & Bennett, C. (2006). Serway’s college physics. Belmont: Thomson Brooks/Cole.Google Scholar
  34. Fishbane, P. M., Gasiorowicz, S., & Thornton, S. T. (1996). Physics for scientists and engineers (Vol. 1). Upper Saddle River NJ: Prentice Hall.Google Scholar
  35. Fließbach, T. (2007). Lehrbuch zur theoretischen Mechanik 1: Mechanik (5th ed.). Heidelberg, Berlin, Oxford: Spektrum Akademischer Verlag.Google Scholar
  36. French, A. P. (1971). Newtonian mechanics. New York, London: W. W. Norton.Google Scholar
  37. Galili, I. (1993). Weight and Gravity: Teachers’ ambiguity and students’ confusion about the concepts. International Journal of Science Education, 15, 149–162.CrossRefGoogle Scholar
  38. Galili, I. (1995). Interpretation of students’ understanding of the concept of weightlessness. Research in Science Education, 25, 51–74.CrossRefGoogle Scholar
  39. Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. International Journal of Science Education, 23, 1073–1093.CrossRefGoogle Scholar
  40. Galili, I. (2009). Thought experiments: Determining their meaning. Science & Education, 18, 1–23.CrossRefGoogle Scholar
  41. Galili, I., & Bar, V. (1992). Motion implies force: Where to expect vestiges of the misconception? International Journal of Science Education, 14, 63–81.CrossRefGoogle Scholar
  42. Galili, I., & Kaplan, D. (1996). Students’ operation with the concept of weight. Science Education, 80, 457–487.CrossRefGoogle Scholar
  43. Galili, I., & Tseitlin, M. (2010). Excurse to the history of weight concept: From Aristotle to Newton and then to Einstein (online:
  44. Gerthsen, C. (2006). Physik (23rd ed.). Berlin, Heidelberg, New York: Springer.Google Scholar
  45. Giancoli, D. C. (1991). Principles with applications (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  46. Graneau, P., & Graneau, N. (2006). In the grip of the distant universe: The science of inertia. New Jersey: Worlds Scientific.CrossRefGoogle Scholar
  47. Greiner, W. (2008). Klassische Mechanik I: Kinematik und Dynamik der Punktteilchen Relativität (8th ed.). Frankfurt am Main: Harry Deutsch.Google Scholar
  48. Halliday, D., Resnick, R., & Walker, J. (1993). Fundamentals of physics (4th ed.). New York: Wiley.Google Scholar
  49. Hamel, G. (1912). Elementare Mechanik. Leipzig, Berlin: Teubner.Google Scholar
  50. Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.Google Scholar
  51. Hanson, N. R. (1963). The law of inertia: A philosopher’s touchstone. Philosophy of Science, 30, 107–121.CrossRefGoogle Scholar
  52. Hanson, N. R. (1965). Newton’s first law: A philosopher’s door into natural philosophy. In R. G. Colodny (Ed.), Beyond the edge of certainty (pp. 6–28). Englewood-Cliffs, NJ: Prentice Hall.Google Scholar
  53. Hecht, E. (1994). Physics. Pacific Grove, CA: Brooks/Cole Publishing Company.Google Scholar
  54. Hecht, E. (2006). There is no really good definition of mass. The Physics Teacher, 44, 40–45.CrossRefGoogle Scholar
  55. Helmholtz, H. (1911). Vorlesungen über die Dynamik discreter Massenpunkte. Leipzig: J. A. Barth.Google Scholar
  56. Hertz, H. (1956). The principles of mechanics presented in a new form (D. E. Jones & J. T. Walley Trans.). With a new introduction by Robert S. Cohen, New York: Dover Publications.Google Scholar
  57. Hestenes, D. (1986). New foundations for classical mechanics. Dordrecht, Boston, Lancaster: D. Reidel Pub. Co.CrossRefGoogle Scholar
  58. Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60, 732–748.CrossRefGoogle Scholar
  59. Hewitt, P. G., Suchocki, J., & Hewitt, L. A. (1999). Conceptual physics science (2nd ed.). Menlo Park, California: Addison Wesley Longman.Google Scholar
  60. Hijs, T., & Bosch, G. M. (1995). Cognitive effects of science experiments focusing on students’ preconceptions of force: A comparison of demonstrations and small-group practicals. International Journal of Science Education, 17, 311–323.CrossRefGoogle Scholar
  61. Hofmann, W. (1904). Kritische Beleuchtung der beiden Grundbegriffe der Mechanik: Bewegung und Trägheit und daraus gezogene Folgerungen betreffs der Achsendrehung der Erde und des Foucault’schen Pendelversuchs’ (J. B. Barbour, partial Trans.). in: Barbour 1995, pp. 128–133.Google Scholar
  62. Jammer, M. (1997) [1961]. Concepts of mass: In classical and modern physics. NY: Dover PublicationsGoogle Scholar
  63. Jammer, M. (1999) [1957]. Concepts of force: A study in the foundations of dynamics. Mineola, NY: Dover Publications.Google Scholar
  64. Jammer, M. (2001). Concepts of mass in contemporary physics and philosophy. Princeton: Princeton University Press.Google Scholar
  65. Kalman, C. (2002). Developing critical thinking in undergraduate courses: A philosophical approach. Science & Education, 11, 83–94.CrossRefGoogle Scholar
  66. Kalman, C. (2009). A role for experiment in using the law of inertia to explain the nature of science: A comment on Lopes Celho. Science & Education, 18, 25–31.CrossRefGoogle Scholar
  67. Kalman, C. (2010). On the concept of force: A comment on Lopes Coelho. Science & Education (online first).Google Scholar
  68. Kibble, T. W. B., & Berkshire, F. H. (2004). Classical mechanics (5th ed.). London: Imperial College Press.Google Scholar
  69. Kleppner, D., & Kolenkow, R. J. (1976). An introduction to mechanics. Boston: McGraw Hill.Google Scholar
  70. Knudsen, J. M., & Hjorth, P. G. (1996). Elements of Newtonian mechanics (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  71. Kohlrausch, F.(1996). Praktische Physik: zum Gebrauch für Unterricht, Forschung und Technik, 24th edn. V. Kose & S. Wagner (Eds.), Teubner, Stuttgart.Google Scholar
  72. Koyré, A. (1966). Études Galiléennes. Paris: Hermann.Google Scholar
  73. Krantz, D. (1973). Fundamental measurement of force and Newton’s first and second laws of motion. Philosophy of Science, 40, 481–495.CrossRefGoogle Scholar
  74. Kuypers, F. (2010). Klassische Mechanik (9th ed.). Weinheim: Wiley.Google Scholar
  75. Lange, L. (1885). Nochmals über das Beharrungsgesetz. Philosophische Studien, 2, 539–545.Google Scholar
  76. Laplace, P. S. (1799). Traité de Mécanique Céleste, Vol. I. Paris. Culture et Civilisation, Brussell, 1967 (rep.).Google Scholar
  77. Lenard, P. (1936). Deutsche Physik 1: Einleitung und Mechanik. München: Lehmanns Verl.Google Scholar
  78. Lindsay, R. B. (1933). Physical mechanics. New York: D. van Nostrand Co.Google Scholar
  79. Lüders, K., & Pohl, R. O. (2004). Pohls Einführung in die Physik (19th ed.). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  80. Ludwig, G. (1985). Einführung in die Grundlagen der Theoretischen Physik I: Raum, Zeit, Mechanik (3rd ed.). Braunschweig, Wiesbaden: Vieweg.Google Scholar
  81. Mach, E. (1868). Ueber die Definition der Masse. Repertorium für Experimental-Physik, 4, 355–359.Google Scholar
  82. Mach, E. (1974). The science of mechanics: A critical and historical account of its development (T. J. McCormack, Trans.) (6th ed.). La Salle, Illinois: The Open Court Pub. Co.Google Scholar
  83. Malamitsa, K., Kasoutas, M., & Kokkotas, P. (2009). Developing Greek primary school students’ critical thinking through an approach of science teaching which incorporates aspects of history of science. Science & Education, 18, 457–468.CrossRefGoogle Scholar
  84. Matthews, M. R. (2009). Teaching the philosophical and worldviews components of science. Science & Education, 18, 697–728.CrossRefGoogle Scholar
  85. Morin, D. (2008). Introduction to classical mechanics. Cambridge: Cambridge University Press.Google Scholar
  86. Newton, I. (1726). Isaac Newton’s Philosophiae naturalis Principia Mathematica (3rd ed.), Koyré & I. B. Cohen (Eds.) Harvard University Press, 1972.Google Scholar
  87. Newton, I. (1999). The principia: Mathematical principles of natural philosophy (I. B. Cohen & A. Whitman new Trans.). Berkeley: University of California Press.Google Scholar
  88. Niedrig, H. (1992). Physik. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  89. Nielsen, J. (1935). Vorlesungen über elementare Mechanik (W. Fenchel, Trans.). Berlin: Springer.Google Scholar
  90. Nolting, W. (2005). Grundkurs: Theoretische Physik 1: Klassische Mechanik (7th ed.). Braunschweig, Wiesbaden: Vieweg.Google Scholar
  91. O’Leary, A. J. (1947). The teaching of dynamics in an introductory physics course. American Journal of Physics, 15, 336–339.CrossRefGoogle Scholar
  92. Ohanian, H. C. (1994). Principles of physics. New York, London: W.W.Norton and Company.Google Scholar
  93. Planck, M. (1916). Einführung in die Allgemeine Mechanik. Leipzig: S. Hirzel.Google Scholar
  94. Platrier, C. (1954). Mécanique Rationnelle. Dunod, Paris: Tome I.Google Scholar
  95. Poincaré, H. (1897). Les Idées de Hertz sur la Mécanique. Revue Générale des Sciences, 8, 734–743.Google Scholar
  96. Poincaré, H. (1900) [1901]. ‘Sur les Principes de la Mécanique’, In I er Congrès international de Philosophie, Tome 3. Paris, (pp. 457–494). Kraus Reprint Limited, Nendeln, Liechtenstein, 1968 (rep.).Google Scholar
  97. Reineker, P., Schulz, M., & Schulz, B. M. (2006). Theoretische Physik I: Mechanik. Weinheim: Wiley.Google Scholar
  98. Roche, J. (2005). What is mass? European Journal of Physics, 26, 225–242.CrossRefGoogle Scholar
  99. Roche, J. (2006). What is momentum. European Journal of Physics, 27, 1019–1036.CrossRefGoogle Scholar
  100. Rowlands, S., Graham, T., Berry, J., & McWilliam, P. (2007). Conceptual changes through the lens of Newtonian mechanics. Science & Education, 16, 21–42.CrossRefGoogle Scholar
  101. Saint-Venant, A. J. C. B. (1851). Principes de Mécanique fondés sur la Cinématique. Paris: Bachelier.Google Scholar
  102. Schaefer, C. (1962). Einführung in die Theoretische Physik (6th ed., Vol. 1). Berlin: de Gruyter.Google Scholar
  103. Scobel, W., Lindström, G., & Langkau, R. (2002). Mechanik, Fluiddynamik und Wärmelehre (2nd ed.). Berlin, Heidelberg: Springer.Google Scholar
  104. Serway, R. A., & Faughn, J. (1985). College physics. Philadelphia: Saunders College Pub.Google Scholar
  105. Serway, R. A., Beicher, R. J., & Jeweet, J. W. (2000). Physics for scientists and engineers (5th ed.). Philadelphia: Saunders College Publishing.Google Scholar
  106. Sommerfeld, A. (1947). Vorlesungen über theoretische Physik I: Mechanik (3rd ed.). Leipzig: Akad. Verl. Geest & Portig.Google Scholar
  107. Stachel, J. (2005). Development of the concepts of space, time and space-time from Newton to Einstein. In A. Ashtekar (Ed.), 100 years of relativity/space-time structure: Einstein and beyond (pp. 3–36). Singapore: World Scientific.CrossRefGoogle Scholar
  108. Stachel, J. (2007). The Story of Newstein or: Is Gravity just another pretty force? In J. Renn, M. Janssen, & M. Schemmel (Eds.), The genesis of general relativity, Bd. 250 (pp. 1041–1078). Berlin: Springer.CrossRefGoogle Scholar
  109. Steinle, F. (1992). Was ist Masse? Newtons Begriff der Materiemenge. Philosophia Naturalis, 29, 94–117.Google Scholar
  110. Stephanie, H., & Kluge, G. (1995). Theoretische Mechanik: Punkt- und Kontinuumsmechanik. Heidelberg, Berlin: Spektrum Akademischer Verlag.Google Scholar
  111. Strauch, D. (2009). Classical mechanics: An introduction. Berlin, Heidelberg: Springer.Google Scholar
  112. Thomson, W., & Tait, P. G. (1888). Treatise on natural philosophy. Cambridge: University Press.Google Scholar
  113. Tipler, P. A., & Mosca, G. (2009). Physik für Wissenschaftler und Ingenieure (M. Basler, R. Dohmen, C. Heinisch, A. Schleitzer & M. Zillgitt, Trans.) (6th ed.). Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  114. Voigt, W. (1901). Elementare Mechanik. Leipzig: Veit & Comp.Google Scholar
  115. Weber, R. (2007). Physik, Teil I: Klassische Physik–Experimentelle und theoretische Grundlagen. Wiesbaden: Teubner.Google Scholar
  116. Weinstock, R. (1961). Laws of classical motion. What’s F? What’s m? What’s a? American Journal of Physics, 29, 698–702.CrossRefGoogle Scholar
  117. Westphall, W. H. (1959). Physik (20th ed.). Berlin, Heidelberg, New York: Springer.Google Scholar
  118. Wilczek, F. (2004). Whence the force of F = ma? I: Culture shock. Physics Today, 57N10, 11–12.CrossRefGoogle Scholar
  119. Wilczek, F. (2005). Whence the force of F = ma? III: Cultural diversity. Physics Today, 58N7, 10–11.CrossRefGoogle Scholar
  120. Wolfson, R., & Pasachoff, J. M. (1990). Physics. Glenview, Ill: Scott.Google Scholar
  121. Young, H. D. (1992). University physics (8th ed.). Reading, Massachussets: Addison-Wesley Pub. Co.Google Scholar
  122. Young, H. D., Freedman, R. A., & Sears, F. (2004). Sears and Zemansky’s university physics (11th ed.). San Francisco: Addison-Wesley.Google Scholar
  123. Zemplén, G. (2007). Conflicting agendas: Critical thinking versus science education in the international baccalaureate theory of knowledge course. Science & Education, 16, 167–196.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations