Advertisement

Science & Education

, Volume 20, Issue 2, pp 103–140 | Cite as

Argumentation in Science Education: A Model-based Framework

  • Florian Böttcher
  • Anke Meisert
Article

Abstract

The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons for the appropriateness of a theoretical model which explains a certain phenomenon. Argumentation is considered to be the process of the critical evaluation of such a model if necessary in relation to alternative models. Secondly, some methodological details are exemplified for the use of a model-based analysis in the concrete classroom context. Third, the application of the approach in comparison with other analytical models will be presented to demonstrate the explicatory power and depth of the model-based perspective. Primarily, the framework of Toulmin to structurally analyse arguments is contrasted with the approach presented here. It will be demonstrated how common methodological and theoretical problems in the context of Toulmin’s framework can be overcome through a model-based perspective. Additionally, a second more complex argumentative sequence will also be analysed according to the invented analytical scheme to give a broader impression of its potential in practical use.

Keywords

Science Education Background Model Target Model Rival Model Representational Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by the Hans Mühlenhoff Foundation (Osnabrück, Germany) and the FAZIT Foundation (Frankfurt on the Main, Germany).

References

  1. Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17, 805–827.CrossRefGoogle Scholar
  2. Baguley, T., & Payne, S. J. (2000). Long-term memory for spatial and temporal mental models includes construction processes and model structure. The Quarterly Journal of Experimental Psychology, 53A(2), 479–512.Google Scholar
  3. Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 473–498.CrossRefGoogle Scholar
  4. Clement, J. J. (2008). Student/teacher co-construction of visualizable models in large group discussion. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science. Dordrecht: Springer.CrossRefGoogle Scholar
  5. Clement, J. J., & Rea-Ramirez, M. A. (Eds.). (2008). Model based learning and instruction in science. Dordrecht: Springer.Google Scholar
  6. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16, 725–749.CrossRefGoogle Scholar
  7. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.CrossRefGoogle Scholar
  8. Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education. Dordrecht: Springer.Google Scholar
  9. Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education. Dordrecht: Springer.Google Scholar
  10. Erduran, S., Simon, S., & Osborne, J. (2004). TAPing into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88, 915–933.CrossRefGoogle Scholar
  11. Felton, M., & Kuhn, D. (2001). The development of argumentive discourse skill. Discourse Processes, 32(2&3), 135–153.CrossRefGoogle Scholar
  12. Garcia-Mila, M., & Andersen, C. (2008). Cognitive foundations of learning argumentation. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education. Dordrecht: Springer.Google Scholar
  13. Giere, R. (1988). Explaining science: A cognitive approach. Chicago, London: University of Chicago Press.Google Scholar
  14. Giere, R. (1992). The cognitive construction of scientific knowledge. Social Studies of Science, 22, 95–107.CrossRefGoogle Scholar
  15. Giere, R. (1999). Science without laws. Chicago, London: University of Chicago Press.Google Scholar
  16. Giere, R. (2001). A new framework for teaching scientific reasoning. Argumentation, 15, 21–33.CrossRefGoogle Scholar
  17. Giere, R. (2004). How models are used to represent reality. Philosophy of Science, 71, 742–752.CrossRefGoogle Scholar
  18. Giere, R. (2010). An agent-based conception of models and scientific representation. Synthese, 172, 269–281.CrossRefGoogle Scholar
  19. Giere, R., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning. Belmont, Calif (et al.): Thomson Wadsworth.Google Scholar
  20. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73–79.CrossRefGoogle Scholar
  21. Grandy, R. E. (1997). Constructivisms and objectivity: Disentangling metaphysics from pedagogy. Science & Education, 6, 43–53.CrossRefGoogle Scholar
  22. Halloun, I. A. (2007). Mediated modelling in science education. Science & Education, 16, 653–697.CrossRefGoogle Scholar
  23. Held, C., Knauff, M., & Vosgerau, G. (Eds.). (2006). Mental models and the mind. Amsterdam (et al.): Elsevier.Google Scholar
  24. Hildebrand, D., Bilica, K., & Capps, J. (2008). Addressing controversies in science education: A pragmatic approach to evolution education. Science & Education, 17, 1033–1052.CrossRefGoogle Scholar
  25. Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541–562.CrossRefGoogle Scholar
  26. Hoyningen-Huene, P. (2008). Systematicity: The nature of science. Philosophia, 36, 167–180.CrossRefGoogle Scholar
  27. Izquierdo-Aymerich, M., & Aduriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12, 27–43.CrossRefGoogle Scholar
  28. Jiménez-Aleixandre, M. P., Rodríguez, A. B., & Duschl, R. A. (Eds.) (2000). “Doing the Lesson” or “Doing Science”: Arguments in High School Genetics. Science Education 84, 757–792.Google Scholar
  29. Jiminéz-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education. An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education. Dordrecht: Springer.Google Scholar
  30. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge (et al.): Cambridge University Press.Google Scholar
  31. Johnson-Laird, P. N. (2006). Mental models, sentential reasoning, and illusory inferences. In C. Held, M. Knauff, G. Vosgerau, et al. (Eds.), Mental models and the mind. Amsterdam (et al.): Elsevier.Google Scholar
  32. Johnson-Laird, P. N. (2009). How we reason. Oxford (et al.): Oxford University Press.Google Scholar
  33. Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices through oral written discourse. Journal of Research in Science Teaching, 36, 883–915.CrossRefGoogle Scholar
  34. Kelly, G. J., Druker, S., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849–871.CrossRefGoogle Scholar
  35. Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of University Oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.CrossRefGoogle Scholar
  36. Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16, 751–773.CrossRefGoogle Scholar
  37. Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, MA: MIT Press.Google Scholar
  38. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 219–337.CrossRefGoogle Scholar
  39. Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science, 9(5), 178–181.CrossRefGoogle Scholar
  40. Kuhn, D. (2001). How do people know? Psychological Science, 12(1), 1–8.CrossRefGoogle Scholar
  41. Kuhn, D., & Dean, D. Jr. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268–273.CrossRefGoogle Scholar
  42. Kuhn, D., & Franklin, S. (2006). The second decade: What develops (and How). In W. Damon, et al. (Eds.), Handbook of child psychology 2–Cognition, perception and language. Hoboken, New Jersey: Wiley.Google Scholar
  43. Kuhn, D., & Pearsall, S. (1998). Relations between Metastrategic knowledge and strategic claims. Cognitive Development, 13, 227–247.CrossRefGoogle Scholar
  44. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287–315.CrossRefGoogle Scholar
  45. Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5), 1245–1260.CrossRefGoogle Scholar
  46. Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90–104.CrossRefGoogle Scholar
  47. Kuhn, D. (1991). The skills of argument. Cambridge (et al.): Cambridge University Press.Google Scholar
  48. Kuhn, D. (2005). Education for thinking. Cambridge (et al.): Harvard University Press.Google Scholar
  49. Lawson, A. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387–1408.CrossRefGoogle Scholar
  50. Matthews, M. R. (1997). Introductory comments on philosophy and constructivism in science education. Science & Education, 6, 5–14.CrossRefGoogle Scholar
  51. Matthews, M. R. (2007). Models in science and in science education: An introduction. Science & Education, 16, 647–652.CrossRefGoogle Scholar
  52. Meisert, A. (2008). Vom Modellwissen zum Modellverständnis–Elemente einer umfassenden Modellkompetenz und deren Fundierung durch lernerseitige Kriterien zur Klassifikation von Modellen. ZfDN, 243–261.Google Scholar
  53. Metzinger, T. (2003). Being no one: The self-model theory of subjectivity. Cambridge (et al.): MIT Press.Google Scholar
  54. Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science. Cambridge: Cambridge University Press.Google Scholar
  55. Nersessian, N. J. (2008a). Creating scientific concepts. Cambridge (et al.): MIT Press.Google Scholar
  56. Nersessian, N. J. (2008b). Mental modelling in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change. New York: Routledge.Google Scholar
  57. Núñez Oviedo, M. C. & Clement, J. (2003). Model competition: A strategy based on model based teaching and learning theory. Proceedings of NARST, Philadelphia, PA, March 23–26, http://www-unix.oit.umass.edu/~clement/pdf/model_competition.pdf (06–10–2010).
  58. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRefGoogle Scholar
  59. Patronis, T. (1999). Students’ argumentation in decision-making on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21(7), 745–754.CrossRefGoogle Scholar
  60. Portides, D. P. (2007). The relation between idealisation and approximation in scientific model construction. Science & Education, 16, 699–724.CrossRefGoogle Scholar
  61. Rea-Ramirez, M. A., Clement, J., & Núñez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement & M. A. Rea-Ramírez (Eds.), Model based learning and instruction in science. Dordrecht: Springer.Google Scholar
  62. Sadler, T. D., & Donelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488.CrossRefGoogle Scholar
  63. Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112–138.CrossRefGoogle Scholar
  64. Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92, 447–472.CrossRefGoogle Scholar
  65. Schaeken, W., Vandierendonck, A., Schroyens, W., & d’Ydewalle, G. (2007). The mental models theory of reasoning. Mahwah, New Jersey: Lawrence Erlbaum Associates.Google Scholar
  66. Seel, N. M. (2006). Mental models in learning situations. In C. Held, M. Knauff, & G. Vosgerau (Eds.), Mental models and the mind. Amsterdam (et al.): Elsevier.Google Scholar
  67. Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: A historical case study. Science & Education, 16, 835–848.CrossRefGoogle Scholar
  68. Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260.CrossRefGoogle Scholar
  69. Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana and Chicago: University of Illinois Press.Google Scholar
  70. Suppe, F. (2000). Understanding scientific theories: An assessment of developments 1969–1998. Philosophy of Science, 67, 102–115.CrossRefGoogle Scholar
  71. Tamayo, A. O., & Sanmartí, N. (2007). High-school students’ conceptual evolution of the respiration concept from the perspective of Giere’s cognitive science model. International Journal of Science Education, 29(2), 215–248.CrossRefGoogle Scholar
  72. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  73. Toulmin, S. E. (2003). The uses of argument. Cambridge (et al.): Cambridge University Press.Google Scholar
  74. van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation. The pragma-dialectical approach. Cambridge (et al.): Cambridge University Press.Google Scholar
  75. van Fraassen, B. (1980a). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  76. van Fraassen, B. (1980b). Theory construction and experiment: An empiricist view. Proceedings of the Philosophy of Science Association, 2, 663–677.Google Scholar
  77. von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of How Students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.CrossRefGoogle Scholar
  78. Voss, J. F., & van Dyke, J. A. (2001). Argumentation in psychology: Background comments. Discourse Processes, 32(2&3), 89–111.CrossRefGoogle Scholar
  79. Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Erlbaum.Google Scholar
  80. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Biology and ChemistryUniversity of HildesheimHildesheimGermany

Personalised recommendations