Science & Education

, 19:91

On the Concept of Force: How Understanding its History can Improve Physics Teaching



Some physicists have pointed out that we do not know what force is. The most common definition of force in textbooks has been criticized for more than two centuries. Many studies have shown that the concept of force is a problem for teaching. How to conceive force on the basis of the concepts and criticism of force in the works of Newton, Euler, d’Alembert, Lagrange, Lazare Carnot, Saint-Venant, Reech, Kirchhoff, Mach, Hertz and Poincaré is the question of the present article. This part of the article is followed by an overview of definitions of force in contemporary textbooks. In the next part, an answer to the question is given: how to understand force within the framework of the laws of motion and in applications. Finally, some educational implications are considered.


  1. Alonso M, Finn EJ (1992) Physics. Addison-Wesley, WokinghamGoogle Scholar
  2. Andrade J (1898) Leçons de Mécanique Physique. Soc d’Éd Scient, ParisGoogle Scholar
  3. Arons AB (1990) A guide to introductory physics teaching. Wiley, New YorkGoogle Scholar
  4. Bergmann L, Schaefer C (1998) Lehrbuch der Experimentalphysik, vol I, Mechanik, Akustik, Wärme, 11th edn. de Gruyter, Berlin, New YorkGoogle Scholar
  5. Bliss J, Ogborn J (1994) Force and motion from the beginning. Learn Instr 4:7–25CrossRefGoogle Scholar
  6. Budó Á (1974) Theoretische Mechanik, 7th edn. VEB Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  7. Carnot L (1803) Principes fondamentaux de l’équilibre et du mouvement. Deterville, ParisGoogle Scholar
  8. Carson R, Rowlands S (2005) Mechanics as the logical point of entry for the enculturation into scientific thinking. Sci Educ 14:473–493CrossRefGoogle Scholar
  9. Chalmers AF (2008) What is this thing called Science? 3rd edn. Open University Press, Berkshire (Republished)Google Scholar
  10. Clifford WK (1955) The Common Sense of the Exact Sciences. K. Pearson (ed). J. R. Newman (newly ed), Dover Publications, New YorkGoogle Scholar
  11. Coelho RL (2001) Zur Konzeption der Kraft der Mechanik. Waxmann, Münster, New YorkGoogle Scholar
  12. Coelho RL (2007) On the law of inertia: how understanding its history can improve physics teaching. Sci Educ 16:955–974CrossRefGoogle Scholar
  13. Cohen IB (1970) Newton’s second law and the concept of force in the Principia. In: Palter R (ed) The annus mirabilis of Sir Isaac Newton 1666–1966. MIT Press, Cambridge, MA, pp 143–191Google Scholar
  14. d’ Alembert J (1758) Traité de Dynamique, 2nd edn. Paris, Johnson Reprint Corporation, New York, London, (Republished 1968)Google Scholar
  15. Daniel H (1997) Physik, Vol. 1, Mechanik, Wellen, Wärme. de Gruyter, Berlin, New YorkGoogle Scholar
  16. de Lozano SR, Cardenas M (2002) Some learning problems concerning the use of symbolic language in physics. Sci Educ 11:589–599CrossRefGoogle Scholar
  17. Dellian E (1985) Die Newtonsche Konstante. Philos Nat 22:400–405Google Scholar
  18. Dransfeld K, Kienle P, Kalvius GM (2001) Physik I: Mechanik und Wärme, 9th edn. Oldenbourg, MünchenGoogle Scholar
  19. Driver R, Newton P, Osborne J (2000) Establishing the norms of scientific argumentation in classrooms. Sci Educ 84:287–312CrossRefGoogle Scholar
  20. Dugas R (1950) Histoire de la Mécanique. Éditions Griffon, NeuchatelGoogle Scholar
  21. Ellis B (1962) Newton’s concept of motive force. J Hist Ideas 23:273–278CrossRefGoogle Scholar
  22. Ellis B (1963) Universal and differential forces. Br J Philos Sci 14:177–194CrossRefGoogle Scholar
  23. Ellis B (1965) The origin and nature of Newton’s laws of motion. In: Colodny RG (ed) Beyond the edge of certainty. Englewood Cliffs, NJ, pp 29–68Google Scholar
  24. Ellis B (1976) The existence of forces. Stud Hist Philos Sci 7:171–185CrossRefGoogle Scholar
  25. Euler L (1736) Mechanica sive motus scientia analityce exposita. Opera Omnia, serie II, vol 1–2, Teubner, Leipzig (1912)Google Scholar
  26. Euler L (1750/1752) Découverte d’un Nouveau Principe de Mecanique, Mémoires de l’académie des sciences de Berlin 6:185–217. Opera Omnia, serie II, vol 5, pp 81–108Google Scholar
  27. Feynman RP, Leighton RB, Sand M (1974) Feynman Vorlesungen über Physik. Feynman Lect Phys 1:1. Oldenburg, München, WienGoogle Scholar
  28. Fließbach T (2007) Lehrbuch zur theoretischen Mechanik. Vol. 1 Mechanik. Spektrum Akademischer Verlag, 5th edn. Heidelberg, Berlin, OxfordGoogle Scholar
  29. French AP (1971) Newtonian mechanics. W. W. Norton, New York, LondonGoogle Scholar
  30. Galili I, Bar V (1992) Motion implies force: where to expect vestiges of the misconception? Int J Sci Educ 14:63–81CrossRefGoogle Scholar
  31. Galili I (2001) Weight versus gravitational force: historical and educational perspectives. Int J Sci Educ 23:1073–1093CrossRefGoogle Scholar
  32. Gerthsen C (2006) Physik, 23rd edn. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  33. Halloun I, Hestenes D (1985) Common sense concepts about motion. Am J Phys 53:1056–1065CrossRefGoogle Scholar
  34. Hamel G (1912) Elementare Mechanik. Teubner, Leipzig, BerlinGoogle Scholar
  35. Hanson NR (1965) Newton’s first law: a philosopher’s door into natural philosophy. In: Colodny RG (ed) Beyond the edge of certainty. Prentice Hall, Englewood-Cliffs, NJ, pp 6–28Google Scholar
  36. Hecht E (2006) There is no really good definition of mass. Phys Teach 44:40–45CrossRefGoogle Scholar
  37. Helmholtz H (1911) Vorlesungen über die Dynamik discreter Massenpunkte. J. A. Barth, LeipzigGoogle Scholar
  38. Hertz H (1894) Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt. J. A. Barth, LeipzigGoogle Scholar
  39. Hertz H (2003/1899) The principles of mechanics presented in a new form, Trans. by Jones DE and Walley JT, Dover Publications, Nineola, New YorkGoogle Scholar
  40. Hestenes D (1987) New Foundations for Classical Mechanics, D. Reidel, Dordrecht, Boston, Lancaster (Republished)Google Scholar
  41. Hestenes D (1992) Modeling games in the Newtonian world. Am J Phys 60:732–748CrossRefGoogle Scholar
  42. Hijs T, Bosch GM (1995) Cognitive effects of science experiments focusing on students’ preconceptions of force: a comparison of demonstrations and small-group praticals. Int J Sci Educ 17:311–323CrossRefGoogle Scholar
  43. Hunt IE, Suchting WA (1969) Force and “natural motion”. Philos Sci 36:233–251CrossRefGoogle Scholar
  44. Jammer M (1999/1957), Concepts of force: a study in the foundations of dynamics. Dover Publications, Mineola, NYGoogle Scholar
  45. Kirchhoff G (1897) Vorlesungen über Mathematische Physik, vol I, 4th edn. Teubner, LeipzigGoogle Scholar
  46. Kohlrausch F (1996) Praktische Physik: zum Gebrauch für Unterricht, Forschung und Technik. 24th edn, Teubner, StuttgartGoogle Scholar
  47. Kress G, Ogborn J, Jewitt C, Tsatsarleis B (1998) Rhetorics of science classroom: a multimodal approach. Institute of Education, LondonGoogle Scholar
  48. Kuypers F (2008) Klassische Mechanik, 8th edn. Wiley, WeinheimGoogle Scholar
  49. Lagrange J-L (1888–1889) Mécanique Analytique. 4th edn. ParisGoogle Scholar
  50. Laplace PS (1799) Traité de Mécanique Céleste, Vol. I. Paris. Culture et Civilisation, Brussell, (Republished 1967)Google Scholar
  51. Lenard P (1936) Deutsche Physik. Vol. 1. Einleitung und Mechanik. Lehmanns, MünchenGoogle Scholar
  52. Lombardi O (1999) Aristotelian physics in the context of teaching science: a historical philosophical approach. Sci Educ 8:217–239CrossRefGoogle Scholar
  53. Ludwig G (1985) Einführung in die Grundlagen der Theoretischen Physik, Vol. I Raum, Zeit, Mechanik, 3rd edn. Vieweg, Braunschweig, WiesbadenGoogle Scholar
  54. Mach E (1868) Ueber die Definition der Masse. Repertorium Experimental-Physik 4:355–359Google Scholar
  55. Mach E (1933) Die Mechanik in ihrer Entwicklung, 9th edn. Brockhaus, LeipzigGoogle Scholar
  56. Maltese G (1992) La Storia di F = ma: la seconda legge del moto nel XVIII secolo. Leo S. Olschki, FirenzeGoogle Scholar
  57. Matthews MR (2008) Teaching the philosophical and worldviews components of science. Sci Educ, Online First: doi 10.1007/s11191-007-9132-4
  58. McClelland JAG (1985) Misconceptions in mechanics and how to avoid them. Phys Educ 20:159–162CrossRefGoogle Scholar
  59. Nagel E (1961) Structure of science: problems in the logic of scientific explanation. Harcourt, Brace & World, New YorkGoogle Scholar
  60. Newton I (1726/1972) Isaac Newton’s Philosophiae naturalis Principia Mathematica, 3rd edn. Harvard Univ. PressGoogle Scholar
  61. Nolting W (2005) Grundkurs: Theoretische Physik, Vol. 1, Klassische Mechanik, 7th edn, Vieweg, Braunschweig, WiesbadenGoogle Scholar
  62. Peters P (1985) Even honors students have conceptual difficulties with physics. Am J Phys 50:501–508CrossRefGoogle Scholar
  63. Planck M (1916) Einführung in die Allgemeine Mechanik. S. Hirzel, LeipzigGoogle Scholar
  64. Platrier C (1954) Mécanique Rationnelle. Tome I, Dunod, ParisGoogle Scholar
  65. Poincaré H (1897) Les Idées de Hertz sur la Mécanique. Rev Gen Sci 8:734–743Google Scholar
  66. Poincaré H (1900/1901), Sur les Principes de la Mécanique. In Ier Congrès international de Philosophie, Tome 3. Paris, pp 457–494. Kraus Reprint Limited, Nendeln, Liechtenstein (Republished 1968)Google Scholar
  67. Poisson SD (1833) Traité de Mécanique. Bachelier, ParisGoogle Scholar
  68. Reech F (1852) Cours de Mécanique d’après la nature généralement flexible et élastique des corps, Carilian-Goeury et Vor Dalmont, ParisGoogle Scholar
  69. Roche J (2006) What is momentum. Eur J Phys 27:1019–1036CrossRefGoogle Scholar
  70. Rowlands S, Graham T, Berry J (1998) Identifying blocks in the development of student understanding of moments of forces. Int J Math Educ Sci Technol 29:511–531CrossRefGoogle Scholar
  71. Rowlands S, Graham T, Berry J (1999) Can we speak of alternative frameworks and conceptual change in mechanics. Sci Educ 8:241–271CrossRefGoogle Scholar
  72. Rowlands S, Graham T, Berry J, McWilliam P (2007) Conceptual changes through the lens of Newtonian mechanics. Sci Educ 16:21–42CrossRefGoogle Scholar
  73. Schaefer C (1962) Einführung in die Theoretische Physik, vol 1, 6th edn. de Gruyter, BerlinGoogle Scholar
  74. Saint-Venant AJCB (1851) Principes de Mécanique fondés sur la Cinématique. Bachelier, ParisGoogle Scholar
  75. Seker H, Welsh LC (2006) The use of history of mechanics in teaching motion and force units. Sci Educ 15:55–89CrossRefGoogle Scholar
  76. Smith TI, Wittmann MC (2008) ‘Applying a resources framework to analysis of the force and motion conceptual evaluation’, Physical review special topics—physics. Educ Res 4:020101Google Scholar
  77. Snider CW (1967) The confusion concerning universal forces. Br J Philos Sci 18:64–66CrossRefGoogle Scholar
  78. Sommerfeld A (1947) Vorlesungen über theoretische Physik. Vol. I Mechanik. 3rd edn. Akad. Verl. Geest & Portig, LeipzigGoogle Scholar
  79. Stinner A (2001) Linking ‘the book of nature’ and ‘the book of science’: using circular motion as an exemplar beyond the textbook. Sci Educ 10:323–344CrossRefGoogle Scholar
  80. Voigt W (1901) Elementare Mechanik. Veit & Comp, LeipzigGoogle Scholar
  81. Webster AG (1904) The dynamics of particles and of rigid, elastic, and fluid bodies. Teubner, LeipzigGoogle Scholar
  82. Wilczek F (2004) Whence the force of F = ma ? I: culture shock. Phys Today 57N10:11–12CrossRefGoogle Scholar
  83. Wilczek F (2005) Whence the force of F = ma ? III: cultural diversity. Phys Today 58N7:10–11CrossRefGoogle Scholar
  84. Wolfson R, Pasachoff JM (1990) Physics. Scott, Glenview, IllGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations