Science & Education

, Volume 18, Issue 8, pp 961–983 | Cite as

On the Concept of Energy: How Understanding its History can Improve Physics Teaching

  • Ricardo Lopes CoelhoEmail author


Some physicists have pointed out that we do not know what energy is. Many studies have shown that the concept of energy is a problem for teaching. A study of the history of the concept shows that the discoverers of energy did not find anything which is indestructible and transformable but rather that the concept of energy underwent a change of meaning and energy was considered a substance towards the end of the nineteenth century. In distinguishing between the treatment of phenomena and the theories carried out by Mayer and Joule, it can be concluded that they established equivalences between different domains, such as motion and heat, motion and electricity or position and motion. This complies with the interpretation presented in textbooks published about a century ago and enables us to overcome some difficulties with the concept of energy.


Potential Energy Mechanical Energy Mechanical Effect Actual Energy Mechanical Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen HS, Maxwell RS (1962) A text-book of heat. Macmillan, LondonGoogle Scholar
  2. Ampère JM (1822) Expériences relatives à de nouveaux phénomènes électro-dynamiques. Annales de Chimie et de Physique 20:60–74Google Scholar
  3. Arons AB (1999) Development of energy concepts in introductory physics courses. Am J Phys 67:1063–1067CrossRefGoogle Scholar
  4. Barbosa JP, Borges AT (2006) O Entendimentos dos Estudantes sobre Energia no início do Ensino Médio. Caderno Brasileiro de Ensino de Física 23:182–217Google Scholar
  5. Bauman RP (1992) Physics that textbook writers usually get wrong. Phys Teacher 30:264–269CrossRefGoogle Scholar
  6. De Berg KC (2006) The concepts of heat and temperature: the problem of determining the content for the construction of an historical case study which is sensitive to nature of science issues and teaching-learning issues. Sci & Educ (online)Google Scholar
  7. Bergmann L, Schaefer C (1998) Lehrbuch der Experimentalphysik I, 11th edn. De Gruyter, Berlin, New YorkGoogle Scholar
  8. Berthollet CL (1809) Notes sur divers objects. Mémoires de Physique et de Chimie de la Société d’Arcueil. Tome sécond. Paris (Rep. New York: Johnson)Google Scholar
  9. Bevilacqua F (1983) The principle of conservation of energy and the history of classical electromagnetic theory. La Goliardica Pavese, PaviaGoogle Scholar
  10. Beynon J (1990) Some myths surrounding energy. Phys Educ 25:314–316CrossRefGoogle Scholar
  11. Breger H (1982) Die Natur als arbeitende Maschine: zur Entstehung des Energiebegriffs in der Physik 1840–1850. Campus Verlag. Frankfurt a. M., New YorkGoogle Scholar
  12. Bueche F (1972) Principles of physics, 2nd edn. Mc Graw Hill, New YorkGoogle Scholar
  13. Bunge M (2000) Energy: between physics and metaphysics. Sci & Educ 9:457–461CrossRefGoogle Scholar
  14. Caneva KL (1993) Robert Mayer and the conservation of energy. Princeton University Press, PrincetonGoogle Scholar
  15. Cardwell DSL (1989) James Joule. A biography. Manchester University Press, ManchesterGoogle Scholar
  16. Carnot S (1824) Réflexions sur la puissance motrice du feu. Bachelier, Paris (Rep. Éditions J. Gabay, 1990)Google Scholar
  17. Cassiday D, Holton G, Rutherford J (2002) Understanding Physics. Springer, New York [etc.]Google Scholar
  18. Çengel Y, Boles M (2002) Thermodynamics. Mc Graw Hill, Boston [etc.]Google Scholar
  19. Chalmers B (1963) Energy. Academic Press, New York, LondonGoogle Scholar
  20. Chrisholm D (1992) Some energetic thoughts. Phys Educ 27:215–220CrossRefGoogle Scholar
  21. Clausius R (1850) Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik 79:368–397; 500–524Google Scholar
  22. Coelho RL (2006) O Conceito de Energia: passado e sentido. Opuscula Officinara, vol II. Shaker, AachenGoogle Scholar
  23. Colladon D, Sturm C (1828) Ueber die Zusammendrückbarkeit der Flüssigkeiten. Annalen der Physik 88:161–197CrossRefGoogle Scholar
  24. Cotignola MI, Bordogna C, Punte G, Cappannini OM (2002) Difficulties in learning thermodynamic concepts: are they linked to the historical development of this field? Sci & Educ 11:279–291CrossRefGoogle Scholar
  25. Cutnell J, Johnson K (1997) Physics. Wiley, CanadaGoogle Scholar
  26. Dahl PF (1963) Colding and the conservation of energy. Centaurus 8:174–188CrossRefGoogle Scholar
  27. Davy H (1799) The collected works of Sir Humphey Davy, Smith, Elder and Co., London, 1839–1840Google Scholar
  28. Delon M (1988) L’idée d’énergie au tournant des Lumières (1770–1820). Pr. Univ. de France, ParisGoogle Scholar
  29. Doménech JL, Gil-Pérez D, Gras-Marti A, Guisasola J, Martínez-Torregrosa J, Salinas J, Trumper R, Valdés P, Vilches A (2007) Teaching of energy issues: a debate proposal for a global reorientation. Sci & Educ 16:43–64CrossRefGoogle Scholar
  30. Dransfeld K, Kienle P, Kalvius GM (2001) Physik I: Mechanik und Wärme, 9th edn. Oldenbourg, MünchenGoogle Scholar
  31. Duit R (1981) Understanding energy as a conserved quantity – remarks on the article by R. U. Sexl. Eur J Sci Educ 3:291–294Google Scholar
  32. Duit R (1986) Der Energiebegriff im Physikunterricht. IPN, Abt. Didaktik d. Physik, KielGoogle Scholar
  33. Duit R (1987) Should energy be illustrated as something quasi-material? Int J Sci Educ 9:139–145CrossRefGoogle Scholar
  34. Faraday M (1832) Experimental researches in electricity. Philos Trans Roy Soc Lond, pp 125–162Google Scholar
  35. Feynman R (1966) The Feynman lectures on physics, 2nd edn. LondonGoogle Scholar
  36. Greenslade TB (2002) Nineteenth-century measurements of the mechanical equivalent of heat. Phys Teacher 40:243–248CrossRefGoogle Scholar
  37. Guedj M (2000) L’émergence du principe de conservation de l’énergie et la construction de la thermodynamique. PhD Dissertation, ParisGoogle Scholar
  38. Hänsel H, Neumann W (1993) Physik: Mechanik und Wärme. Spektrum, Akad. Verl., Heidelberg [etc.]Google Scholar
  39. Haldat (1807) Recherches sur la chaleur produite par le frottement. Journal de Physique de Chime et d’Histoire Naturelle 65:213–222Google Scholar
  40. Halliday D, Resnick R, Walker J (2003) Physik. German Trans. Wiley, WeinheimGoogle Scholar
  41. Hecht E (2003) An historico-critical account of potential energy: is PE really real? Phys Teacher 41:486–493CrossRefGoogle Scholar
  42. Hertz H (1894) Die Prinzipien der Mechanik. J. A. Barth, LeipzigGoogle Scholar
  43. Hicks N (1983) Energy is the Capacity to do Work – or is it?. The Phys Teacher 21:529–530CrossRefGoogle Scholar
  44. Hund F (1956) Theoretische Physik, vol 3. Teubner, StuttgartGoogle Scholar
  45. Joule JP (1884, 1887) The scientific papers of James Prescott Joule, vol 2. The Physical Society, London (Rep. Dawsons, London, 1963)Google Scholar
  46. Kemp HR (1984) The concept of energy without heat and work. Phys Educ 19:234–240CrossRefGoogle Scholar
  47. Lehrman R (1973) Energy is not the ability to do work. Am J Phys 60:356–365Google Scholar
  48. Lodge OJ (1879) An attempt at a systematic classification of the various forms of energy. Philos Magazine 8:277–286Google Scholar
  49. Lodge OJ (1885) On the identity of energy: in connection with Mr Poynting’s paper on the transfer of energy in an electromagnetic field; and the two fundamental forms of energy. Philos Magazine 19:482–494Google Scholar
  50. Marques M (2007) Integração de Tópicos de História das Ciências no Ensino: Estudo de Caso: Energia no Ensino Básico. M. Dissertation, LisboaGoogle Scholar
  51. Maxwell J (1873) Theory of heat. 3rd edn. Greenwood, ConnecticutGoogle Scholar
  52. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:233–240 (In Mayer, 1978)CrossRefGoogle Scholar
  53. Mayer JR (1845) Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Heilbronn (In Mayer 1978)Google Scholar
  54. Mayer JR (1851) Bemerkungen über das mechanische Aequivalent der Wärme. Heilbronn. (In Mayer 1978)Google Scholar
  55. Mayer JR (1893) Die Mechanik der Wärme in gesammelten Schriften v. Robert Mayer. J. Weyrauch (ed.). StuttgartGoogle Scholar
  56. Mayer JR (1978) Die Mechanik der Wärme: Sämtliche Schriften. HP Münzenmayer, Stadtarchiv Heilbronn (eds) Stadtarchiv Heilbronn, HeilbronnGoogle Scholar
  57. Müller Y, Pouillet C (1926) Lehrbuch der Physik, vol 3-I. 11th edn. Vieweg & Sohn, BraunschweigGoogle Scholar
  58. Muncke GW (1829) Handbuch der Naturlehre I. Universitäts-Buchhandlung C. Winter, HeidelbergGoogle Scholar
  59. Nicholls G, Ogborn J (1993) Dimensions of children’s conceptions of energy. Int J Sci Educ 15:73–81CrossRefGoogle Scholar
  60. Ostwald W (1908) Die Energie, 2nd edn. J. A. Barth, Leipzig, 1912Google Scholar
  61. Ostwald W (1912) Der energetische Imperativ. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  62. Planck M (1887) Das Prinzip der Erhaltung der Energie, 4th edn. (1921) Teubner, Leipzig, BerlinGoogle Scholar
  63. Poincaré H (1892) Cours de Physique Mathématique, 3. Thermodynamique: Leçons professés pendant le premier semestre 1888–89/Paris, J. BlondinGoogle Scholar
  64. Poynting JH (1884) On the transfer of energy in the electromagnetic field. Philos Trans Roy Soc 175:343–361Google Scholar
  65. Preston T (1919) The theory of heat. 3rd edn. Macmillan, LondonGoogle Scholar
  66. Prideaux N (1995) Different approaches to the teaching of the energy concept. School Sci Rev 77:49–57Google Scholar
  67. Rankine W (1850) Abstract of a paper on the hypothesis of molecular vortices, and its application to the mechanical theory of heat. Proc Roy Soc Edinburgh II:275–288Google Scholar
  68. Rankine W (1853) On the general law of the transformation of energy. Philos Magazine 34:106–117Google Scholar
  69. Roche J (2003) What is potential energy? Eur J Phys 24:185–196CrossRefGoogle Scholar
  70. Rumford BC (1798) An inquiry concerning the source of the heat which is excited by friction. Philos Trans 88:80–102Google Scholar
  71. Seebeck (1821–1822) Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (1822–1823):265–373Google Scholar
  72. Schirra N (1989) Entwicklung des Energiebegriffs und seines Erhaltungskonzepts. PhD Dissertation, GiessenGoogle Scholar
  73. Sexl RU (1981) Some observations concerning the teaching of the energy concept. Eur J Sci Educ 3:285–289Google Scholar
  74. Smith C (1998) The science of energy: a cultural history of energy physics in Victorian Britain. The Athlone Press, LondonGoogle Scholar
  75. Solomon J (1985) Teaching the conservation of energy. Phys Educ 20:165–170CrossRefGoogle Scholar
  76. Suckow GA (1813) Anfangsgründe der Physik und Chemie nach den neuesten Entdeckungen. Augsburg, LeipzigGoogle Scholar
  77. Thomson W (1849) An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments of steam. Trans R S Edinburgh 16:541–574Google Scholar
  78. Thomson W (1851) On the dynamical theory of heat; with numerical results deduced from Mr Joule ‘s Equivalent of a Thermal Unit, and M. Regnault’s Observations on Steam. Trans Roy Soc Edinburgh (1853) 20:261–98; 475–482Google Scholar
  79. Thomson W (1852) On a universal tendency in nature to the dissipation of mechanical energy. Proc Roy Soc Edinburgh 3:139–142Google Scholar
  80. Thomson W (1854) On the mechanical antecedents of motion, heat, and light. Thomson 1884:34–40Google Scholar
  81. Thomson W, Tait P (1862) Energy. Good Words 3:601–607Google Scholar
  82. Thomson W (1884) Mathematical and physical papers II. Cambridge University Press, CambridgeGoogle Scholar
  83. Tipler P (2000) Physik. German Trans. Spektrum Akad. Verl., Heidelberg [etc.]Google Scholar
  84. Trumper R (1990) Being constructive: an alternative approach to the teaching of the energy concept – part one. Int J Sci Educ 12:343–354CrossRefGoogle Scholar
  85. Trumper R (1991) Being constructive. an alternative approach to the teaching of the energy concept – part two. Int J Sci Educ 13:1–10CrossRefGoogle Scholar
  86. Trumper R (1997) Applying conceptual conflict strategies in the learning of the energy concept. Res Sci Tech Educ 15:5–18CrossRefGoogle Scholar
  87. Valente M (1999) Uma leitura pedagógica da construção histórica do conceito de energia: contributo para uma didáctica crítica. PhD Dissertation, LisboaGoogle Scholar
  88. Verdet E (1868) Oeuvres de E. Verdet. T. 7. Masson, ParisGoogle Scholar
  89. Watts DM (1983) Some alternative views of energy. Phys Educ 18:213–217CrossRefGoogle Scholar
  90. Young H, Freedman R (2004) Sears and Zemansky’s University Physics, 11th edn. P. Addison-Wesley, San Francisco [etc.]Google Scholar
  91. Young T (1807) A course of lectures on natural philosophy and the mathematical arts, vol 2. P. Kelland (ed). Taylor and Walton, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations