Advertisement

Science & Education

, Volume 16, Issue 7–8, pp 725–749 | Cite as

The Model-Based View of Scientific Theories and the Structuring of School Science Programmes

  • Maria Develaki
OriginalPaper

Abstract.

Model theory in contemporary philosophy of science interprets scientific theories as sets of models, and contributes significantly to the understanding of the relation between theories, models, and the real world. The clarification of this relation is fundamental for the understanding of the nature of scientific methods and scientific knowledge and can contribute to the shaping of epistemologically pertinent educational models in science education. We initially present a reconstruction of the most important model-based contributions concerning mainly the nature, construction and the functions of theoretical models. Our interest focuses particularly on the theory structure scheme of the model-based view, which Ronald Giere explicitly formulated using as a paradigm the structuring of classical mechanical models, and which we extend to become a base for a structuring of basic quantum mechanical models. We consider this scheme to provide an adequate basis for the structuring of school science contents; and further propose in outline a way of structuring typical physics content, in which the topics are presented as theoretical models of the same theory, together with the modelling rules that led to their construction, and also some examples of their empirical application.

Keywords

Nature of science Model based view Theoretical models Theory structure Theories Models and real world Classical mechanics and quantum mechanics Science education 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adúriz-Bravo A., Izquierdo-Aymerich M. (2005) Utilizing the 3P-model to Characterize the Discipline of Didactics of Science. Science & Education 14:29–41CrossRefGoogle Scholar
  2. Boyd R.N. (1983) On the Current Status of the Issue of Scientific Realism. Erkenntnis 19:45–90CrossRefGoogle Scholar
  3. Bunge, M. (1970) Physik und Wirklichkeit. In: Krüger L. (eds.), Erkenntnisprobleme der Naturwissenschaften, KölnGoogle Scholar
  4. Devitt M. (1991) Realism and Truth (2nd edn.). Blackwell, Oxford (UK) & Cambridge (USA)Google Scholar
  5. Duhem P. (1978) Ziel und Struktur der physikalischen Theorien. Meiner, HamburgGoogle Scholar
  6. Feyerabend P.K. (1981) Probleme des Empirismus. Vieweg, BraunschweigGoogle Scholar
  7. Fischler H., Lichtfeld M. (1992), Modern Physics and Student’s Concepts. International Journal of science Education 14:181–190Google Scholar
  8. van Fraasen B.C. (1980) The Scientific Image. Oxford University Press, OxfordGoogle Scholar
  9. Giere R.N. (1988) Explaining Science. A Cognitive Approach. University of Chicago Press, ChicagoGoogle Scholar
  10. Giere R.N (1999) Science without Laws. University of Chicago Press, Chicago & LondonGoogle Scholar
  11. Götschl J. (1980) Theorie. In: Speck J. (eds), Handbuch wissenschaftstheoretischer Begriffe, Band 3. Vandenhoeck and Ruprecht, Göttingen, pp. 636–646Google Scholar
  12. Grandy R.E. (1992) Theories of Theories, A View from Cognitive Science. In: Earman J. (eds), Inference, Explanation, and other Frustrations. Essays in the Philosophy of Science. University of California Press, Berkeley, pp. 216–233Google Scholar
  13. Grandy R.E. (2003) What Are Models and Why Do We Need Them?. Science & Education 12:773–2003CrossRefGoogle Scholar
  14. Grandy, R.E. & Duschl, R.A.: 2005, ‘Reconsidering the Character and Role of Inquiry in School Science: Analysis of a Conference’ (Paper presented at the International History and Philosophy of Science and Science Teaching Group meeting in Leeds, England, July 15–18, 2005), http://www.ruf.rice.edu/∼rgrandy/ConferenceInfo.htmlGoogle Scholar
  15. Halloun I.A. (1998) Interactive Model-Based Education: An Alternative to Outcomes-Based Education in Physics. South African Journal of Science 94:1–14Google Scholar
  16. Halloun I.A. (2004) Modelling Theory in Science Education. Kluwer Academic Publishers, DordrechtGoogle Scholar
  17. Izquierdo, M. & Adúriz-Bravo, A.: 2001, ‘Contributions of the Cognitive Model of Science to Didactics of Science’, Fifth International Conference of the IHPST Group, Denver, pp. 1–11Google Scholar
  18. Justi R.S., Gilbert J.K. (2003) Teachers’ views on the nature of models. International Journal of Science Education 25:1369–1386CrossRefGoogle Scholar
  19. Kuhn T.S. (1974a) Logik der Forschung oder Psychologie der wissenschaftlichen Arbeit. In: Lakatos I., Musgrave A. (eds), Kritik und Erkenntnisfortschritt. Vieweg, Braunschweig, pp. 1–23Google Scholar
  20. Kuhn T.S. (1974b) Bemerkungen zu meinen Kritikern. In: Lakatos I., Musgrave A. (eds), Kritik und Erkenntnisfortschritt. Vieweg, Braunschweig, pp. 223–269Google Scholar
  21. Kuhn, T.S.: 1989, Die Struktur wissenschaftlicher Revolutionen (10. Aufl.), Suhrkamp-Taschenbuch, Frankfurt am MainGoogle Scholar
  22. Lakatos I. (1974) Falsifikation und die Methodologie wissenschaftlicher Forschungsprogramme. In: Lakatos I., Musgrave A. (eds), Kritik und Erkenntnisfortschritt. Vieweg, Braunschweig, pp. 89–189Google Scholar
  23. Losee J. (1990) A Historical Introduction to the Philosophy of Science. University Press, OxfordGoogle Scholar
  24. Matthews M.R. (1994) Science Teaching. Routledge, New York-LondonGoogle Scholar
  25. Matthews M.R. (2005) Idealization and Galileo’s Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations. In: Matthews M.R., Gauld C.F., Stinner A. (eds), The Pendulum, Scientific, Historical, Philosophical & Educational Perspectives. Springer, The Netherlands, pp. 209–235Google Scholar
  26. Nersessian, N.J.: 2005, Model-based Reasoning in Scientific Practice, http://www.ruf.rice.edu/∼rgrandy/ConferenceInfo.htmlGoogle Scholar
  27. Nola R. (2004) Pendula, Models, Constructivism and Reality. Science & Education 13:349–377CrossRefGoogle Scholar
  28. Popper K. (1974) Die Normalwissenschaft und ihre Gefahren. In: Lakatos I., Musgrave A. (eds), Kritik und Erkenntnisfortschritt. Vieweg, Braunschweig, pp. 51–57Google Scholar
  29. Popper, K.: 1989, Logik der Forschung, 9. Aufl., Mohr, TübingenGoogle Scholar
  30. Sneed J.D. (1980) Theoriedynamik. In: Speck J. (eds), Handbuch wissenschaftstheoretischer Begriffe, Band 3. Vandenhoeck and Ruprecht, Göttingen, pp. 646–653Google Scholar
  31. Stegmüller, W.: 1971, ‘Das Problem der Induktion: Humes Herausforderung und moderne Antworten’, in H. Lenk (ed.), Neue Aspekte der Wissenschaftstheorie, BraunschweigGoogle Scholar
  32. Stegmüller, W.: 1985, Probleme und Resultate der Wissenschaftstheorie und analytischen Philosophie, Band II: Theorie und Erfahrung, Zweiter Teilband: Theorienstrukturen und Theoriendynamik, 2. korrig. Aufl., Springer-Verlag, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  33. Stöckler M. (1995) Theoretische Modelle im Lichte der Wissenschafttheorie. Praxis der Naturwissenschaften – Physik 1:16–22Google Scholar
  34. Suppe F. (1977) The Structure of Scientific Theories (2nd edn.). University of Illinois Press, Urbana and ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Experimental School of the Aristotelian Univeristy of ThessalonikiThessalonikiGreece

Personalised recommendations