Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Exploring the link between innovation and growth in Chilean firms

Abstract

We investigate the relation between the introduction of innovation and subsequent firm growth employing a dataset representative of the Chilean productive structure. By means of quantile treatment effects (QTE), we estimate the effect of the introduction of innovation by comparing firms with a similar propensity to innovate for different quantiles of the firm growth distribution. Our results indicate that process innovation positively affects sales growth for those firms located at the 75th and 90th percentiles. Contrarily, product innovation appears not to be a driver of firm performance. We also find that process innovation benefits mature firms at higher quantiles while it positively affects young firms located at low-medium quantiles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    The presence of these specificities concerning the innovation process in less developed countries may also lead to the mismeasurement of innovation output associated with indicators of standard use. According to Cassoni and Ramada-Sarasola (2012), “since new products do not constitute the core of innovation in non-developed economies, standard innovation output indicators - the share of innovative sales; the accumulated number of patents - would not act as good proxy variables whenever most firms are process-innovative” (p.143).

  2. 2.

    Since the third wave of the ELE provides firm revenues for 2012 in the third wave, we employ 2012 instead of 2013 in the analysis in order to have more homogeneous time intervals.

  3. 3.

    It corresponds approximately to 31,000 USD (1 UF = 39 USD). Firm sizes are stratified according to the following segmentation: micro (800–2400 UF), small (2400–25,000 UF), medium (25,000–100,000 UF) and large (100,000 or more).

  4. 4.

    This cleaning procedure concerning the growth rates led to the exclusion of 57 large firms that experienced extremely high (positive and negative) growth rates. In particular, these large firms have a striking drop (close to 100 %) in their sales in 2009 while these recover in 2012. Therefore, they have extremely high growth episodes for this period (2009–2012). These are probably the results of measurement errors, anomalies in the data concerning those firms or possible M&A that we do not observe. However, since the setting of the 500 % threshold could be considered somewhat discretionary, we conducted the analysis also using a lower and a higher threshold of, respectively, 400 and 600 % and results do not change.

  5. 5.

    Note that we smooth the growth rate over several years since we observe sales data over non-homogeneous time intervals (years 2007, 2009 and 2012); thus, to make the growth rates comparable, we compute an annual average.

  6. 6.

    As Audretsch et al. (2014) pointed out, the indicators used to measure growth are not neutral with respect to empirical results. Different measures describe different patterns of growth (Delmar et al. 2003). In order to check the sensitivity of our results, we employed an alternative growth rate measure based on Birch (1987) which helps reduce the bias toward larger firms (absolute growth) and small firms (relative growth rate). The results are available upon requests.

  7. 7.

    We must stress that, while the second and third waves feature detailed information concerning R&D activities, the first one collects data on R&D which are not strictly comparable with those present in other waves, and, therefore, we restrain from investigating the association between conducting R&D and subsequent firm growth.

  8. 8.

    We choose this cut-off based on recent studies (Coad et al. 2013; Navaretti et al. 2014; Kantis et al. 2016; Coad et al. 2016). However, the estimates presented in the next sections are replicated using a smaller sample of young firms defined as having no more than 8 years old. The results, available from the authors upon request, do not change substantially.

  9. 9.

    Note that all firms in the sample answer this question irrespectively of their innovation status. Productive development policies comprehend a wide array of policy tools such as tax exemptions for training programmes, subsidies aimed at increasing exports, programmes to strengthen the links between small and large firms, and tax credits for the acquisition of machinery.

  10. 10.

    In order to check the robustness of the QR estimates, we employed a recent method proposed by Parente and Santos Silva (2016) which allows to obtain standard errors asymptotically valid under heteroskedasticity and misspecification. The estimates are similar whether we estimate the asymptotic covariance matrix or we estimate the covariance matrix by bootstraping. The results are available upon request.

  11. 11.

    Note that, for the entire split-sample analysis presented in the paper, we do not test whether the coefficients of the innovation variables are significantly different among the two subgroups of firms.

  12. 12.

    Santoleri (2015), employing the ELE, shows similar results on firm age and product innovation.

  13. 13.

    In a previous version of this paper, we also provided nearest neighbour matching (NNM) estimations since we were not performing the split-sample analysis for young and mature firms. Compared to PSM, the NNM showed better covariate balancing. However, given that this technique requires more observations than the PSM, we decided not to perform it since this would lead to a substancial loss of observation due to the impossibility of finding an adequate match.

  14. 14.

    As already mentioned, we do not test whether the difference in the coefficients for young and mature firms is statistically different. Hence, the estimates regarding the split-sample exercise must be interpreted as statistically significant differences in the returns to innovation within each subgroup and not across them.

References

  1. Acemoglu, D., Aghion, P., & Zilibotti, F. (2006). Distance to frontier, selection, and economic growth. Journal of the European Economic association, 4(1), 37–74. doi:10.1162/jeea.2006.4.1.37.

  2. Aghion, P., & Howitt, P. (2005). Growth with quality-improving innovations: an integrated framework. Handbook of Economic Growth, 1, 67–110. doi:10.1016/S1574-0684(05)01002-6.

  3. Alvarez, R., Bravo-Ortega, C., & Navarro, L. (2010). Innovation, R&D investment and productivity in Chile. IDB working paper. doi:10.2139/ssrn.1818741.

  4. Alvarez, R., Benavente, J.M., Campusano, R., & Cuevas, C. (2011). Employment generation, firm size and innovation in Chile. Tech. rep., Inter-American Development Bank. https://publications.iadb.org/handle/11319/5343.

  5. Alvarez, R., Bravo-Ortega, C., & Zahler, A. (2015). Innovation and productivity in services: evidence from Chile. Emerging Markets Finance and Trade, 51(3), 593–611. doi:10.1080/1540496X.2015.1026696.

  6. Audretsch, D.B., Coad, A., & Segarra, A. (2014). Firm growth and innovation. Small Business Economics, 43(4), 743–749. doi:10.1007/s11187-014-9560-x.

  7. Bartelsman, E., Dobbelaere, S., & Peters, B. (2015). Allocation of human capital and innovation at the frontier: firm-level evidence on Germany and the Netherlands. Industrial and Corporate Change, 24(5), 875–949. doi:10.1093/icc/dtu038.

  8. Benavente, J.M. (2006). The role of research and innovation in promoting productivity in Chile. Economics of Innovation and New Technology, 15(4-5), 301–315. doi:10.1080/10438590500512794.

  9. Benavente, J.M., & Lauterbach, R. (2008). Technological innovation and employment: complements or substitutes? The European Journal of Development Research, 20(2), 318–329. doi:10.1080/09578810802060744.

  10. Bianchini, S., Pellegrino, G., & Tamagni, F. (2016). Innovation strategies and firm growth: new longitudinal evidence from spanish firms. LEM Working Paper, Sant’Anna School of Advanced Studies, Pisa, Italy. http://www.lem.sssup.it/WPLem/files/2016-03.pdf.

  11. Birch, D.G. (1987). Job creation in america: how our smallest companies put the most people to work. University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship.

  12. Bogliacino, F., Perani, G., Pianta, M., & Supino, S. (2009). Innovation in developing countries. The evidence from innovation surveys, FIRB conference research and entrepreneurship in the knowledge-based economy, Milano, Universita L. Bocconi. doi:10.1080/13600818.2015.1020939.

  13. Bottazzi, G., & Secchi, A. (2006). Explaining the distribution of firm growth rates, Rand Journal of Economics, 235–256. doi:10.1111/j.1756-2171.2006.tb00014.x.

  14. Bottazzi, G., Dosi, G., Lippi, M., Pammolli, F., & Riccaboni, M. (2001). Innovation and corporate growth in the evolution of the drug industry. International Journal of Industrial Organization, 19(7), 1161–1187. doi:10.1016/S0167-7187(01)00068-6.

  15. Boyer, T., & Blazy, R. (2014). Born to be alive? The survival of innovative and non-innovative french micro-start-ups. Small Business Economics, 42(4), 669–683. doi:10.1007/s11187-013-9522-8.

  16. Buchinsky, M. (1998). Recent advances in quantile regression models: a practical guideline for empirical research, Journal of Human Resources, 88–126. doi:10.2307/146316.

  17. Canay, I.A. (2011). A simple approach to quantile regression for panel data. The Econometrics Journal, 14(3), 368–386. doi:10.1111/j.1368-423X.2011.00349.x.

  18. Capasso, M., Treibich, T., & Verspagen, B. (2015). The medium-term effect of r&d on firm growth. Small Business Economics, 45(1), 39–62. doi:10.1007/s11187-015-9640-6.

  19. Casanova, L., Castellucci, F., Dayton-Johnson, J., Dutta, S., Fonstad, N., Paunov, C., & Pezzini, M. (2011). Innovalatino: fostering innovation in Latin America. http://www.nearshoreexecutives.com/wp-content/uploads/2014/09/InnovaLatino-2011-FINAL-English.pdf.

  20. Cassoni, A., & Ramada-Sarasola, M. (2012). The returns to innovation in Latin America: inexistent or mismeasured? Latin American Business Review, 13(2), 141–169. doi:10.1080/10978526.2012.700276.

  21. Catela, E.Y., Cimoli, M., & Porcile, G. (2015). Productivity and structural heterogeneity in the Brazilian manufacturing sector: trends and determinants. Oxford Development Studies, 43(2), 232–252. doi:10.1080/13600818.2015.1020939.

  22. Chudnovsky, D., López, A., & Pupato, G. (2006). Innovation and productivity in developing countries: a study of Argentine manufacturing firms’ behavior (1992–2001). Research policy, 35(2), 266–288. doi:10.1016/j.respol.2005.10.002.

  23. Cimoli, M., & et al. (2005). Heterogeneidad estructural, asimetrías tecnológicas y crecimiento en América Latina. CEPAL.

  24. Coad, A. (2009). The growth of firms: a survey of theories and empirical evidence. Edward Elgar Publishing. doi:10.1016/0167-7187(95)00498-X.

  25. Coad, A. (2010). Investigating the exponential age distribution of firms. Economics: The Open-Access, Open-Assessment E-Journal 4. doi:10.5018/economics-ejournal.ja.2010-17.

  26. Coad, A., & Rao, R. (2008). Innovation and firm growth in high-tech sectors: a quantile regression approach. Research Policy, 37(4), 633–648. doi:10.1016/j.respol.2008.01.003.

  27. Coad, A., Segarra, A., & Teruel, M. (2013). Like milk or wine: does firm performance improve with age? Structural Change and Economic Dynamics, 24, 173–189. doi:10.1016/j.strueco.2012.07.002.

  28. Coad, A., Segarra, A., & Teruel, M. (2016). Innovation and firm growth: does firm age play a role? Research Policy, 45(2), 387–400. doi:10.1016/j.respol.2015.10.015.

  29. Cohen, W.M., & Klepper, S. (1996). A reprise of size and r&d, The Economic Journal, 925–951. doi:10.2307/2235365.

  30. Colombelli, A., Haned, N., & Le Bas, C. (2013). On firm growth and innovation: some new empirical perspectives using French cis (1992–2004). Structural Change and Economic Dynamics, 26, 14–26. doi:10.1016/j.strueco.2013.03.002.

  31. Crépon, B., Duguet, E., & Mairessec, J. (1998). Research, innovation and productivity: an econometric analysis at the firm level. Economics of Innovation and new Technology, 7(2), 115–158. doi:10.1080/10438599800000031.

  32. Crespi, G., & Zuniga, P. (2012). Innovation and productivity: evidence from six Latin American countries. World Development, 40(2), 273–290. doi:10.1016/j.worlddev.2011.07.010.

  33. Criscuolo, P., Nicolaou, N., & Salter, A. (2012). The elixir (or burden) of youth? Exploring differences in innovation between start-ups and established firms. Research Policy, 41(2), 319–333. doi:10.1016/j.respol.2011.12.001.

  34. Cucculelli, M., & Ermini, B. (2012). New product introduction and product tenure: what effects on firm growth? Research Policy, 41(5), 808--821. doi:10.1016/j.respol.2012.02.001.

  35. Czarnitzki, D., & Delanote, J. (2013). Young innovative companies: the new high-growth firms? Industrial and Corporate Change, 22(5), 1315–1340. doi:10.1093/icc/dts039.

  36. Czarnitzki, D., & Kraft, K. (2004). An empirical test of the asymmetric models on innovative activity: who invests more into r&d, the incumbent or the challenger? Journal of Economic Behavior & Organization, 54(2), 153–173. doi:10.1016/j.jebo.2003.01.008.

  37. Damanpour, F., Walker, R.M., & Avellaneda, C.N. (2009). Combinative effects of innovation types and organizational performance: a longitudinal study of service organizations. Journal of Management Studies, 46(4), 650–675. doi:10.1111/j.1467-6486.2008.00814.x.

  38. Damijan, J.P., Kostevc, Ċ., & Rojec, M. (2012). Does innovation help the good or the poor performing firms? Economics Letters, 115(2), 190–195. doi:10.1016/j.econlet.2011.11.024.

  39. Delmar, F., Davidsson, P., & Gartner, W.B. (2003). Arriving at the high-growth firm. Journal of Business Venturing, 18(2), 189–216. doi:10.1016/S0883-9026(02)00080-0.

  40. Demirel, P., & Mazzucato, M. (2013). Innovation and economic performance (industrial and financial): recent results and questions for future research, Innovation and Finance, 46. https://www.routledge.com/Innovation-and-Finance/Pyka-Burghof/p/book/9780415696852.

  41. Dosi, G., Marsili, O., Orsenigo, L., & Salvatore, R. (1995). Learning, market selection and the evolution of industrial structures. Small Business Economics, 7(6), 411–436. doi:10.1007/BF01112463.

  42. Duguet, E. (2006). Innovation height, spillovers and tfp growth at the firm level: evidence from French manufacturing. Economics of Innovation and New Technology, 15(4-5), 415–442. doi:10.1080/10438590500512968.

  43. Ericson, R., & Pakes, A. (1995). Markov-perfect industry dynamics: a framework for empirical work. The Review of Economic Studies, 62(1), 53–82. doi:10.2307/2297841.

  44. Eurostat (2013). Seventh Community Innovation Survey. Eurostat. http://ec.europa.eu/eurostat/web/science-technology-innovation/data/database.

  45. Falk, M. (2012). Quantile estimates of the impact of r&d intensity on firm performance. Small Business Economics, 39(1), 19–37. doi:10.1007/s11187-010-9290-7.

  46. Fernandes, A.M., & Paunov, C. (2015). The risks of innovation: are innovating firms less likely to die? Review of Economics and Statistics, 97(3), 638–653. doi:10.1162/REST_a00446.

  47. Firpo, S. (2007). Efficient semiparametric estimation of quantile treatment effects, Econometrica, 259–276. doi:10.1111/j.1468-0262.2007.00738.x.

  48. Fligner, M.A., & Policello, G.E. (1981). Robust rank procedures for the Behrens-Fisher problem. Journal of the American Statistical Association, 76(373), 162–168. doi:10.1080/01621459.1981.10477623.

  49. Freel, M.S., & Robson, P.J. (2004). Small firm innovation, growth and performance evidence from Scotland and Northern England. International Small Business Journal, 22(6), 561–575. doi:10.1177/0266242604047410.

  50. Frölich, M., & Melly, B. (2010). Estimation of quantile treatment effects with Stata. Stata Journal, 10(3), 423. http://www.stata-journal.com/article.html?article=st0203.

  51. Geroski, P., & Mazzucato, M. (2002). Learning and the sources of corporate growth. Industrial and Corporate Change, 11(4), 623–644. doi:10.1093/icc/11.4.623.

  52. Geroski, P.A. (1995). What do we know about entry? International Journal of Industrial Organization, 13(4), 421–440. doi:10.1016/0167-7187(95)00498-X.

  53. Geroski, P.A., & Machin, S. (1992). Do innovating firms outperform non-innovators? Business Strategy Review, 3(2), 79–90. doi:10.1111/j.1467-8616.1992.tb00030.x.

  54. Geroski, P.A., Van Reenen, J., & Walters, C.F. (1997). How persistently do firms innovate? Research Policy, 26(1), 33–48. doi:10.1016/S0048-7333(96)00903-1.

  55. Gibrat, R. (1931). Les inégalités économiques. Recueil Sirey.

  56. Goedhuys, M., & Sleuwaegen, L. (2010). High-growth entrepreneurial firms in africa: a quantile regression approach. Small Business Economics, 34(1), 31–51. doi:10.1007/s11187-009-9193-7.

  57. Goedhuys, M., & Sleuwaegen, L. (2016). High-growth versus declining firms: the differential impact of human capital and R&D. Applied Economics Letters, 23(5), 369–372. doi:10.1080/13504851.2015.1076139.

  58. Goedhuys, M., & Veugelers, R. (2012). Innovation strategies, process and product innovations and growth: firm-level evidence from Brazil. Structural Change and Economic Dynamics, 23(4), 516–529. doi:10.1016/j.strueco.2011.01.004 10.1016/j.strueco.2011.01.004.

  59. Hall, B.H., & Mairesse, J. (2006). Empirical studies of innovation in the knowledge-driven economy. Economics of Innovation and New Technology, 15(4-5), 289–299. doi:10.1080/10438590500512760.

  60. Haltiwanger, J., Jarmin, R.S., & Miranda, J. (2013). Who creates jobs? Small versus large versus young. Review of Economics and Statistics, 95(2), 347–361. doi:10.1162/REST_a00288.

  61. Haltiwanger, J., Jarmin, R.S., Kulick, R., & Miranda, J. (2016). High growth young firms: contribution to job, output, and productivity growth, Measuring Entrepreneurial Businesses: Current Knowledge and Challenges, University of Chicago Press. http://www.nber.org/chapters/c13492.pdf.

  62. Hölzl, W. (2009). Is the R&D behaviour of fast-growing SMEs different? Evidence from CIS III data for 16 countries. Small Business Economics, 33(1), 59–75. doi:10.1007/s11187-009-9182-x.

  63. Hölzl, W., & Friesenbichler, K.S. (2010). High-growth firms, innovation and the distance to the frontier. Economics Bulletin, 30(2), 1016–1024. http://ssrn.com/abstract=2388820.

  64. Huergo, E., & Jaumandreu, J. (2004). How does probability of innovation change with firm age? Small Business Economics, 22(3-4), 193–207. doi:10.1023/B:SBEJ.0000022220.07366.b5.

  65. Jovanovic, B. (1982). Selection and the evolution of industry, Econometrica: Journal of the Econometric Society, 649–670. http://www.jstor.org/stable/1912606.

  66. Kannebley, Jr, S., Sekkel, J.V., & Araújo, B.C. (2010). Economic performance of Brazilian manufacturing firms: a counterfactual analysis of innovation impacts. Small Business Economics, 34(3), 339–353. doi:10.1007/s11187-008-9118-x 10.1007/s11187-008-9118-x.

  67. Kantis, H., Federico, J., Angelelli, P., & Garcia, S.I. (2016). Business performance in young Latin American firms, Innovation and productivity in Latin American and Caribbean firms, Palgrave Macmillan US. doi:10.1057/978-1-349-58151-1.

  68. Koenker, R., & Bassett, Jr G. (1978). Regression quantiles, Econometrica: Journal of the Econometric Society, 33–50. doi:10.2307/1913643.

  69. Lever, M., & Nieuwenhuijsen, H. (1999). The impact of competition on productivity in dutch manufacturing. Innovation, Industry Evolution and Employment pp 111– 128.

  70. Lotti, F., Santarelli, E., & Vivarelli, M. (2009). Defending Gibrat’s law as a long-run regularity. Small Business Ecoomics, 32(1), 31–44. doi:10.1007/s11187-007-9071-0.

  71. Mairesse, J., & Mohnen, P. (2010). Using innovation surveys for econometric analysis. Handbook of the Economics of Innovation, 2, 1129–1155. doi:10.1016/S0169-7218(10)02010-1.

  72. Mansfield, E. (1962). Entry, Gibrat’s law, innovation, and the growth of firms, The American Economic Review, 1023–1051. http://www.jstor.org/stable/1812180.

  73. Mazzucato, M., & Parris, S. (2015). High-growth firms in changing competitive environments: the US pharmaceutical industry (1963 to 2002). Small Business Economics, 44(1), 145–170. doi:10.1007/s11187-014-9583-3.

  74. Ministerio de Economia (2014). Octava Encuesta de Innovacion en Empresas, 2011-2012. Principales Resultados. Ministerio de Economia. http://www.economia.gob.cl/wp-content/uploads/2014/02/Presentacion-Resultados-8va-Encuesta-Innovacion1.pdf.

  75. Navaretti, G.B., Castellani, D., & Pieri, F. (2014). Age and firm growth: evidence from three european countries. Small Business Economics, 43(4), 823–837. doi:10.2307/146316 10.2307/146316.

  76. Nelson, R.R., & Winter, S.G. (1982). An An Evolutionary Theory of Economic Change. Belknap Press of Harvard University Press, Cambridge, MA.

  77. Nickell, S.J. (1996). Competition and corporate performance, Journal of Political Economy, 724–746. http://www.jstor.org/stable/2138883.

  78. OECD (2005). Oslo manual: guidelines for collecting and interpreting innovation data. 4, Publications de l’OCDE. doi:10.1787/9789264013100-en.

  79. OECD/ECLAC (2013). Latin American Economic Outlook 2013. OECD Publishing. 10.1787/leo-2013-en.

  80. OECD/World Bank (2015). The Innovation Policy Platform. OECD.

  81. Parente, P.M., & Santos Silva, J. (2016). Quantile regression with clustered data. Journal of Econometric Methods, 5(1), 1–15. doi:10.1515/jem-2014-0011.

  82. Paunov, C. (2012). The global crisis and firms’ investments in innovation. Research Policy, 41(1), 24–35. doi:10.1016/j.respol.2011.07.007.

  83. Pavitt, K. (1984). Sectoral patterns of technical change: towards a taxonomy and a theory. Research policy, 13(6), 343–373. doi:10.1016/0048-7333(84)90018-0.

  84. Pellegrino, G., Piva, M., & Vivarelli, M. (2012). Young firms and innovation: a microeconometric analysis. Structural Change and Economic Dynamics, 23(4), 329–340. doi:10.1016/j.strueco.2011.10.003.

  85. Pérez, P., Dutrénit, G., & Barceinas, F. (2005). Actividad innovadora y desempeño económico: un análisis econométrico del caso mexicano Indicadores de Ciencia y Tecnología en Iberoamérica Buenos Aires, Argentina: RICYT.

  86. Pinto, A. (1970). Naturaleza e implicaciones de la heterogeneidad estructural de la América Latina. El trimestre econó,mico pp 83–100.

  87. Raffo, J., Lhuillery, S., & Miotti, L. (2008). Northern and southern innovativity: a comparison across European and Latin American countries. The European Journal of Development Research, 20(2), 219–239. doi:10.1080/09578810802060777.

  88. Santoleri, P. (2015). Diversity and intensity of information and communication technologies use and product innovation: evidence from Chilean micro-data. Economics of Innovation and New Technology, 24 (6), 550–568. doi:10.1080/10438599.2014.946313.

  89. Schumpeter, J.A. (1934). The theory of economic development: an inquiry into profits, capital, credit, interest, and the business cycle, vol. 55. Transaction publishers.

  90. Stam, E., & Wennberg, K. (2009). The roles of R&D in new firm growth. Small Business Economics, 33(1), 77–89. doi:10.1007/s11187-009-9183-9.

  91. Sunkel, O. (1978). La dependencia y la heterogeneidad estructural. El trimestre econó, mico pp. 3–20.

  92. Vivarelli, M. (2014). Innovation, employment and skills in advanced and developing countries: a survey of economic literature. Journal of Economic Issues, 48(1), 123–154. doi:10.2753/JEI0021-3624480106.

  93. World Bank (2013). Innovating in the manufacturing sector in Latin America and the Caribbean. LAC Series Note N9. http://www.enterprisesurveys.org//media/FPDKM/EnterpriseSurveys/Documents/Topic-Analysis/Innovating-in-the-Manufacturing-Sector.pdf.

Download references

Acknowledgments

The authors would like to thank Federico Tamagni, Angelo Secchi, Stefano Bianchini, Le Li, Nanditha Mathew, Ernest Migueléz, Andrin Spescha, Lorenzo Napolitano and Emanuele Pugliese as well as two anonymous referees for their helpful comments and suggestions. We are also deeply indebted to Werner Bönte (the editor). Thanks are also due to the participants to the DRUID Academy conference at Bordeaux University and to the 3rd Ph.D. workshop in Economics of Innovation, Complexity and Knowledge at Collegio Carlo Alberto in Turin.

Author information

Correspondence to Pietro Santoleri.

Appendix

Appendix

Table 10 Sample distribution by industry and size
Table 11 Summary statistics and variable description
Table 12 Pairwise correlation matrix
Table 13 First-step of the PSM estimates: logit model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santi, C., Santoleri, P. Exploring the link between innovation and growth in Chilean firms. Small Bus Econ 49, 445–467 (2017). https://doi.org/10.1007/s11187-016-9836-4

Download citation

Keywords

  • Innovation
  • Firm growth
  • Chile
  • Firm age
  • Quantile treatment effects

JEL Classification

  • C14
  • C21
  • C22
  • D22
  • O31