Small Business Economics

, Volume 43, Issue 1, pp 213–228 | Cite as

Spatial agglomeration and firm exit: a spatial dynamic analysis for Italian provinces

  • Giulio Cainelli
  • Sandro Montresor
  • Giuseppe Vittucci Marzetti


The paper investigates the effect of spatial agglomeration on firm exit in a dynamic framework. Using a large dataset at the industry-province level for Italy (1998–2007), we estimate a spatial dynamic panel model via a GMM estimator and analyze the short-run impact of specialization and variety on firm exit. Specialization negatively affects firm exit rates in the short-run. The effect is particularly significant for low-tech firms. The impact of variety on firm mortality rates at the industry level is instead less clear, although still negative and significant for low-tech firms.


Firm exit Localization Spatial agglomeration Specialization Variety 

JEL Classifications

R11 R12 L11 L26 G20 



The authors would like to thank the participants to the VII Workshop of the European Network of the Economics of the Firm (ENEF) (Amsterdam, September 16–17, 2010) and the XXXII Annual Scientific Conference of the Italian Association of Regional Sciences (Milan, September 15–17, 2011) for their useful comments. They are particularly indebted to Alessia Amighini and Roberto Basile, for their suggestions on a previous version of the paper. The authors gratefully acknowledge support for this research from the Autonomous Province of Trento (OPENLOC Project). The usual disclaimers apply.


  1. Aldrich, H., & Auster, E. (1986). Even dwarfs started small: Liabilities of age and size and their strategic implications. Research in Organizational Behavior 8(2), 165–198.Google Scholar
  2. Amendola, A., Ferragina, A., Pittiglio, R., & Reganati, F. (2010). How is the 2007 crisis affecting firms’ survival? Evidence from Italy. Technical report, paper presented at the 11 ETSG conference, Lausanne, September 10, 2010.Google Scholar
  3. Andersson, M., Klaesson, J., & Larsson, J. P. (2013). The sources of the urban wage premium by worker skills: Spatial sorting or agglomeration economies? Papers in Regional Science, forthcoming.Google Scholar
  4. Anselin, L., Le Gallo, J. L., & Jayet, H. (2008). Spatial panel econometrics. In L. Mátyás, P. Sevestre, J. Marquez, A. Spanos, F. Adams, P. Balestra, M. Dagenais, D. Kendrick, J. Paelinck, R. Pindyck, & W. Welfe (Eds.), The econometrics of panel data, volume 46 of Advanced Studies in Theoretical and Applied Econometrics (pp. 625–660). Berlin, Heidelberg: Springer.Google Scholar
  5. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58, 277–297.CrossRefGoogle Scholar
  6. Audretsch, D. (1995). Innovation and industry evolution. Palatino: The MIT Press.Google Scholar
  7. Barron, D., West, E., & Hannan, M. (1994). A time to grow and a time to die: Growth and mortality of credit unions in New York City, 1914–1990. American Journal of Sociology 100, 381–421.Google Scholar
  8. Bathelt, H. (2010). Innovation, learning and knowledge creation in co-localised and distant contexts. In A. Pike, A. Rodriguez-Pose, & J. Tomaney (Eds.), Handbook of local and regional development (pp. 149–159). London: Routledge.Google Scholar
  9. Beaudry, C., & Schiffauerova, A. (2009). Who’s right, Marshall or Jacobs? The localization versus urbanization debate. Research Policy 38(2), 318–337.CrossRefGoogle Scholar
  10. Becattini, G. (1990). The Marshallian industrial district as a socio-economic notion. In F. Pyke, G. Becattini, & W. Sengenberger (Eds.), Industrial districts and inter-firm cooperation in Italy (pp. 37–51). Geneva: ILO.Google Scholar
  11. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87(1), 115–143.CrossRefGoogle Scholar
  12. Blundell, R. W., & Bond, S. R. (2000). GMM estimation with persistent panel data: an application to production functions. Econometric Reviews 19, 321–340.CrossRefGoogle Scholar
  13. Boccella, N., Giovanetti, G., Mion, G., Scanagatta, G., & Signorini, L. (2005). Le metodologie di misurazione dei distretti industriali. Rapporto di ricerca, Presidenza del Consiglio dei Ministri, Commissione per la Garanzia dell’Informazione Statistica.Google Scholar
  14. Bond, S. (2002). Dynamic panel data models: A guide to micro data methods and practice. Portuguese Economic Journal 1(2), 141–162.CrossRefGoogle Scholar
  15. Boschma, R. (2005). Proximity and innovation: A critical assessment. Regional Studies 39(1), 61–74.CrossRefGoogle Scholar
  16. Bouayad-Agha, S., & Vedrine, L. (2010). Estimation strategies for a spatial dynamic panel using GMM. A new approach to the convergence issue of European regions. Spatial Economic Analysis 5(2), 205–227.CrossRefGoogle Scholar
  17. Bradburd, R., & Caves, R. (1982). A closer look at the effect of market growth on industries’ profits. The Review of Economics and Statistics 64(4), 635–45.CrossRefGoogle Scholar
  18. Breitenecker, R., & Schwarz, E. (2011). Detecting spatial heterogeneity in predictors of firm start-up activity of Austria with geographically weighted regression. International Journal of Entrepreneurship and Small Business 12(3), 290–299.Google Scholar
  19. Bugamelli, M., Cristadoro, R., & Zevi, G. (2009). La crisi internazionale e il sistema produttivo italiano: un’analisi su dati a livello di impresa. Occasional paper, Banca d’Italia.Google Scholar
  20. Cainelli, G., Montresor, S., & Vittucci Marzetti, G. (2012). Production and financial linkages in inter-firm networks: Structural variety, risk-sharing and resilience. Journal of Evolutionary Economics 22(4), 711–734.Google Scholar
  21. Carlton, D. (1983). The location and employment choices of new firms: An econometric model with discrete and continuous endogenous variables. Review of Economics and Statistics 65, 440–449.CrossRefGoogle Scholar
  22. Carree, M., Verheul, I., & Santarelli, E. (2011). Sectoral patterns of firm exit in Italian provinces. Journal of Evolutionary Economics 21(3), 499–517.CrossRefGoogle Scholar
  23. Cefis, E., & Marsili, O. (2006). Survivor: The role of innovation in firms’ survival. Research Policy 35(5), 626–641.CrossRefGoogle Scholar
  24. CENSIS. (2010). Congiuntura, competitivitá e nuove identitá dei distretti produttivi. In Osservatorio Nazionale Distretti Italiani (Ed.), I Rapporto Osservatorio Nazionale Distretti Italiani.Google Scholar
  25. Cingano, F., & Schivardi, F. (2004). Identifying the sources of local productivity growth. Journal of the European Economic Association 2(4), 720–744.CrossRefGoogle Scholar
  26. Cohen, W. M., & Levinthal, D. A. (1989). Innovation and learning: The two faces of R&D. The Economic Journal 99(397), 569–596.CrossRefGoogle Scholar
  27. Combes, P. (2000). Economic structure and local growth: France, 1984–1993. Journal of Urban Economics 47(3), 329–355.CrossRefGoogle Scholar
  28. Combes, P., Duranton, G., & Gobillon, L. (2008). Spatial wage disparities: Sorting matters! Journal of Urban Economics 63(2), 723–742.CrossRefGoogle Scholar
  29. Combes, P.-P., Duranton, G., Gobillon, L., Puga, D., & Roux S. (2012). The productivity advantages of large cities: Distinguishing agglomeration from firm selection. Econometrica 80(6), 2543–2594.CrossRefGoogle Scholar
  30. Dei Ottati, G. (1994). Cooperation and competition in the industrial district as an organisational model. European Planning Studies 2, 463–483.CrossRefGoogle Scholar
  31. Dejardin, M. (2004). Sectoral and cross-sectoral effects of retailing firm demographies. The Annals of Regional Science 38(2), 311–334.CrossRefGoogle Scholar
  32. Duranton, G., & Puga, D. (2000). Diversity and specialisation in cities: Why, where and when does it matter? Urban Studies 37(3), 533–555.CrossRefGoogle Scholar
  33. Duranton, G., & Puga, D. (2000). Micro-foundations of urban agglomeration economies. In J. Henderson & J.-F. Thisse (Eds.), Handbook of regional and urban economics (vol. 4, pp. 2063–2117). Amsterdam: Elsevier.Google Scholar
  34. Eeckhout, J., Pinheiro, R., & Schmidheiny, K. (2013). Spatial sorting. Unpublished manuscript.Google Scholar
  35. Elhorst, J. (2005). Unconditional maximum likelihood estimation of linear and log-linear dynamic models for spatial panels. Geographical Analysis 37(1), 85–106.CrossRefGoogle Scholar
  36. Elhorst, J. P. (2010). Spatial panel data models (pp. 377–407). Heidelberg: Springer.Google Scholar
  37. Ellison, G., & Glaeser, E. (1997). Geographic concentration in US manufacturing industries: A dartboard approach. Journal of Political Economy 105(5), 889–927.CrossRefGoogle Scholar
  38. Evangelista, R., Iammarino, S., Mastrostefano, V., & Silvani, A. (2002). Looking for regional systems of innovation: Evidence from the Italian innovation survey. Regional Studies 36(2), 173–186.CrossRefGoogle Scholar
  39. Evans, D. (1987). The relationship between firm growth, size, and age: Estimates for 100 manufacturing industries. Journal of Industrial Economics 35(4), 567–581.CrossRefGoogle Scholar
  40. Feldman, M., & Audretsch, D. (1999). Innovation in cities: Science-based diversity, specialization and localized competition. European Economic Review 43(2), 409–429.CrossRefGoogle Scholar
  41. Frenken, K., Van Oort, F., & Verburg, T. (2007). Related variety, unrelated variety and regional economic growth. Regional Studies 41(5), 685–697.CrossRefGoogle Scholar
  42. Fritsch, M., & Schroeter, A. (2011). Why does the effect of new business formation differ across regions? Small Business Economics 36(4), 383–400.CrossRefGoogle Scholar
  43. Geroski, P. (1995). What do we know about entry? International Journal of Industrial Organization 13(4), 421–440.CrossRefGoogle Scholar
  44. Glaeser, E., Kallal, H., Scheinkman, J., & Shleifer, A. (1992). Growth in cities. Journal of Political Economy 100(1), 126–152.Google Scholar
  45. Glaeser, E., & Kerr, W. (2009). Local industrial conditions and entrepreneurship: How much of the spatial distribution can we explain? Journal of Economics & Management Strategy 18(3), 623–663.CrossRefGoogle Scholar
  46. Hannan, M. (1998). Rethinking age dependence in organizational mortality: Logical formalizations. American Journal of Sociology 104(1), 126–164.CrossRefGoogle Scholar
  47. Henderson, J. (2003). Marshall’s scale economies. Journal of Urban Economics 53(1), 1–28.CrossRefGoogle Scholar
  48. Henderson, J. V., Kuncoro, A., & Turner, M. (1995). Industrial development in cities. Journal of Political Economy 103(5), 1067–1090.Google Scholar
  49. Higano, Y., & Shibusawa, H. (1999) Agglomeration diseconomies of traffic congestion and agglomeration economies of interaction in the information-oriented city. Journal of Regional Science 39(1), 21–49.CrossRefGoogle Scholar
  50. Honjo, Y. (2000). Business failure of new firms: an empirical analysis using a multiplicative hazards model. International Journal of Industrial Organization 18, 557–574.CrossRefGoogle Scholar
  51. Iammarino S., Piva ,M., Vivarelli, M., & Von Tunzelmann, N. (2012). Technological capabilities and patterns of innovative cooperation of firms in the UK regions. Regional Studies 46(10), 1283–1301.CrossRefGoogle Scholar
  52. Ilmakunnas, P., & Topi, J. (1999). Microeconomic and macroeconomic influences on entry and exit of firms. Review of Industrial Organization 15(3), 283–301.CrossRefGoogle Scholar
  53. Jacobs, J. (1969) The economy of cities. New York: Vintage.Google Scholar
  54. Jensen, P., Webster, E., & Buddelmeyer, H. (2008) Innovation, technological conditions and new firm survival. Economic Record 84(267), 434–448.CrossRefGoogle Scholar
  55. Jofre-Monseny, J., Marn-Lpez, R., & Viladecans-Marsal, E. (2011). The mechanisms of agglomeration: Evidence from the effect of inter-industry relations on the location of new firms. Journal of Urban Economics 70(2–3), 61–74.CrossRefGoogle Scholar
  56. Johnson, P., & Parker, S. (1994). The interrelationships between births and deaths. Small Business Economics 6(4), 283–290.CrossRefGoogle Scholar
  57. Kramer, G. (1983). The ecological fallacy revisited: Aggregate-versus individual-level findings on economics and elections, and sociotropic voting. The American Political Science Review 77(1), 92–111.CrossRefGoogle Scholar
  58. Kukenova, M., & Monteiro, J.-A. (2009). Spatial dynamic panel model and system GMM: A Monte Carlo investigation. Technical report. University Library of Munich, Germany.Google Scholar
  59. Langlois, R. N. (1992). Transaction-cost economics in real time. Industrial and Corporate Change 1(1), 99–127.CrossRefGoogle Scholar
  60. Lanzafame, M. (2010). The nature of regional unemployment in Italy. Empirical Economics 39(3), 877–895.CrossRefGoogle Scholar
  61. Lanzafame, M. (2012). Hysteresis and the regional NAIRUs in Italy. Bulletin of Economic Research 64(3), 415–429.CrossRefGoogle Scholar
  62. Lee, L., & Yu, J. (2010a). A spatial dynamic panel data model with both time and individual fixed effects. Econometric Theory 26(02), 564–597.CrossRefGoogle Scholar
  63. Lee, L.-F., & Yu, J. (2010b). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics 154(2), 165–185.CrossRefGoogle Scholar
  64. Lee, L.-F., & Yu, J. (2010c). Some recent developments in spatial panel data models. Regional Science and Urban Economics 40(5), 255–271.CrossRefGoogle Scholar
  65. LeSage, J., & Pace, R. K. (2009). Introduction to Spatial Econometrics. London: Chapman & Hall/CRC.CrossRefGoogle Scholar
  66. Licht, G., & Nerlinger, E. (1998). New technology based firms in Germany: A survey of the recent evidence. Research Policy 269, 1005–1022.CrossRefGoogle Scholar
  67. Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy 31(2), 247–264.CrossRefGoogle Scholar
  68. Mariotti, S., Piscitello, L., & Elia, S. (2010). Spatial agglomeration of multinational enterprises: The role of information externalities and knowledge spillovers. Journal of Economic Geography 10(4), 519–538.CrossRefGoogle Scholar
  69. Martin, P., Mayer, T., & Mayneris, F. (2011). Spatial concentration and plant-level productivity in France. Journal of Urban Economics 69(2), 182–195.CrossRefGoogle Scholar
  70. Martin, R., & Sunley, P. (2006). Path dependence and regional economic evolution. Journal of Economic Geography 6(4), 395.CrossRefGoogle Scholar
  71. Patch, E. P. (1995). Plant closings and employment loss in manufacturing. New York: Garland Publishing.Google Scholar
  72. Pellegrino, G., Piva, M., & Vivarelli, M. (2012). Young firms and innovation: A microeconometric analysis. Structural Change and Economic Dynamics 23(4), 329–340.CrossRefGoogle Scholar
  73. Rosenthal, S., & Strange, W. (2003). Geography, industrial organization, and agglomeration. Review of Economics and Statistics 85(2), 377–393.CrossRefGoogle Scholar
  74. Rosenthal, S., & Strange, W. (2004). Evidence on the nature and sources of agglomeration economies. In J. V. Henderson & J. F. Thisse (Eds.), Handbook of regional and urban economics (vol. 4, pp. 2119–2171). Amsterdam: Elsevier.Google Scholar
  75. Rosenthal, S. S., & Strange, W. C. (2001). The determinants of agglomeration. Journal of Urban Economics 50(2), 191–229.CrossRefGoogle Scholar
  76. Santarelli, E., & Vivarelli, M. (2007). Entrepreneurship and the process of firms’ entry, survival and growth. Industrial and Corporate Change 16(3), 455–488.CrossRefGoogle Scholar
  77. Schindele, Y., Fritsch, M., & Noseleit, F. (2011). Micro-level evidence on the survival of German manufacturing industries—A multidimensional analysis. ERSA conference papers, European Regional Science Association.Google Scholar
  78. Schwartz, S. (1994). The fallacy of the ecological fallacy: The potential misuse of a concept and the consequences. American Journal of Public Health 84(5), 819–824.CrossRefGoogle Scholar
  79. Sforzi, F. (2009). Empirical evidence. In G. Becattini, M. Bellandi, & L. D. Propris (Eds.), A handbook of industrial districts, (Chapter 6, pp. 323–342). Cheltenham: Edward Elgar.Google Scholar
  80. Simonen, J., & McCann, P. (2008). Firm innovation: The influence of r&d cooperation and the geography of human capital inputs. Journal of Urban Economics 64(1), 146–154.CrossRefGoogle Scholar
  81. Staber, U. (2001). Spatial proximity and firm survival in a declining industrial district: The case of knitwear firms in Baden-Württemberg. Regional Studies 35(4), 329–341.CrossRefGoogle Scholar
  82. Stinchcombe, A. L. (1965). Social structure and organizations. In J. March (Ed.), Handbook of organizations. Chicago: Rand McNally.Google Scholar
  83. Storper, M., & Christopherson, S. (1987). Flexible specialization and regional industrial agglomerations: The case of the us motion picture industry. Annals of the Association of American Geographers 77(1), 104–117.CrossRefGoogle Scholar
  84. Su, L., & Yang, Z. (2007). QML estimation of dynamic panel data models with spatial errors. Paper presented at the first world conference of the spatial econometrics association, July 11–14, 2007, Cambridge.Google Scholar
  85. Tabuchi, T. (1998). Urban agglomeration and dispersion: A synthesis of Alonso and Krugman. Journal of Urban Economics 44(3), 333–351.CrossRefGoogle Scholar
  86. Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics 126(1), 25–51.CrossRefGoogle Scholar
  87. Yasuda, T. (2005). Firm growth, size, age and behaviour in Japanese manufacturing. Small Business Economics 24, 1–15.CrossRefGoogle Scholar
  88. Yu, J., De Jong, R., & Lee, L. (2008). Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and t are large. Journal of Econometrics 146(1), 118–134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Economics and ManagementUniversity of PaduaPaduaItaly
  2. 2.CERIS-CNRMilanItaly
  3. 3.Department of EconomicsUniversity of BolognaBolognaItaly
  4. 4.JRC-IPTS, European CommissionSevilleSpain
  5. 5.Department of Sociology and Social ResearchUniversity of Milano-BicoccaMilanItaly

Personalised recommendations