Advertisement

Russian Journal of Plant Physiology

, Volume 52, Issue 6, pp 821–825 | Cite as

Identification and Characterization of New Members of Vacuolar H+-Pyrophosphatase Family from Oryza sativa Genome

  • M. Choura
  • A. Rebai
Article

Abstract

The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump localized in the plant vacuolar membrane. V-PPase from many species has been characterized previously and the corresponding genes/cDNAs have been cloned. Cloning of the V-PPase genes from many plant species has revealed conserved motifs that may correspond to catalytic sites. The completion of the entire DNA sequence of Oryza sativa (430 Mb) presented an opportunity to study the structure and function of V-PPase proteins, and also to identify new members of this family in Oryza sativa. Our analysis identified three novel V-PPase proteins in the Oryza sativa genome that contain functional domains typical of V-PPase. We have designated them as OVP3 to OVP5. The new predicted OVPs have chromosomal locations different from previously characterized V-PPases (OVP1 and OVP2) located on chromosome 6. They all contain three characteristic motifs of V-PPase and also a conserved motif [DE]YYTS, specific to type I V-PPases and involved in coupling PPi hydrolysis to H+ translocation.

Key words

Oryza sativa genome sequence vacuolar H+-pyrophosphatase 

Abbreviations

EST

expressed sequence tag

Pi

inorganic phosphate

PPi

inorganic pyrophosphate

PPase

pyrophosphatase

TMS

transmembrane spanning

V-ATPase

vacuolar H+-ATPase

V-PPase

vacuolar H+-inorganic pyrophosphatase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, A., and Hayakawa, T., Introduction of a H+-Pyrophosphatase Gene from Atriplex gmelini Confers Salt Tolerance to Rice, Biochim. Biophys. Acta, 2002, vol. 532, pp. 279–282.Google Scholar
  2. 2.
    Rea, P.A. and Poole, R.J., Vacuolar H+-Translocating Pyrophosphatase, Plant. Mol. Biol., 1993, vol. 44, pp. 157–180.Google Scholar
  3. 3.
    Fukuda, A., Chiba, K., Maeda, M., Nakamura, A., Maeshima, M., and Tanaka, Y., Effect of Salt and Osmotic Stresses on the Expression of Genes for the Vacuolar H+-Pyrophosphatase, H+-ATPase Subunit A, and Na+/H+ Antiporter from Barley, J. Exp. Bot., 2004, vol. 397, pp. 585–594.Google Scholar
  4. 4.
    Gaxiola, R.A., Li, J.S., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L., and Fink, G.R., Drought-and Salt-Tolerant Plants Result from Overexpression of the AVP1 H+-Pump, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11444–11449.CrossRefPubMedGoogle Scholar
  5. 5.
    Maeshima, M., Vacuolar H+-Pyrophosphatase, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 7–51.Google Scholar
  6. 6.
    Rea, P.A., Kim, Y., Sarafian, V., Poole, R.J., Davies, J.M., and Sanders, D., Vacuolar H+-Translocating Pyrophosphatases: A New Category of Ion Translocase, Trends Biochem. Sci., 1992, vol. 17, pp. 348–353.CrossRefPubMedGoogle Scholar
  7. 7.
    Takasu, A., Nakanishi, Y., Yamauchi, T., and Maeshima, M., Analysis of the Substrate Binding Site and Carboxyl Terminal Region of Vacuolar H+-Pyrophosphatase of Mung Bean with Peptide Antibodies, J. Biochem., 1997, vol. 122, pp. 883–889.PubMedGoogle Scholar
  8. 8.
    Tanaka, Y., Chiba, K., Maeda, M., and Maeshima, M., Molecular Cloning of cDNA for Vacuolar Membrane Proton-Translocating Inorganic Pyrophosphatase in Hordeum vulgare, Biochem. Biophys. Res. Commun., 1993, vol. 190, pp. 1110–1114.PubMedGoogle Scholar
  9. 9.
    Drozdowicz, Y.M., Kissinger, J.C., and Rea, P.A., AVP2, a Sequence-Divergent, K(+)-Insensitive H(+)-Translocating Inorganic Pyrophosphatase from Arabidopsis, Plant Physiol., 2000, vol. 123, pp. 353–362.CrossRefPubMedGoogle Scholar
  10. 10.
    Mitsuda, N., Takeyasu, K., and Sato, M.H., Pollen-Specific Regulation of Vacuolar H+-PPase Expression by Multiple cis-Acting Elements, Plant Mol. Biol., 2001, vol. 46, pp. 185–192.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim, Y., Kim, E.J., and Rea, P.A., Isolation and Characterization of cDNAs Encoding the Vacuolar H+-Pyrophosphatase of Beta vulgaris, Plant Physiol., 1994, vol. 106, pp. 375–382.PubMedGoogle Scholar
  12. 12.
    Lerchl, J., Konig, S., Zrenner, R., and Sonnewald, U., Molecular Cloning, Characterization and Expression Analysis of Isoforms Encoding Tonoplast-Bound Proton-Translocating Inorganic Pyrophosphatase in Tobacco, Plant Mol. Biol., 1995, vol. 29, pp. 833–840.CrossRefPubMedGoogle Scholar
  13. 13.
    Sakakibara, Y., Kobayashi, H., and Kasamo, K., Isolation and Characterization of cDNAs Encoding Vacuolar H+-Pyrophosphatase Isoforms from Rice (Oryza sativa L.), Plant Mol. Biol., 1996, vol. 31, pp. 1029–1038.CrossRefPubMedGoogle Scholar
  14. 14.
    Sakakibara, Y., Kasamo, K., Kobayashi, H., Kusakabe, I., and Kawasaki, S., Identification of the Gene Structure and Promoter Region of H+-Translocating Inorganic Pyrophosphatase in Rice (Oryza sativa L.), Biochim. Biophys. Acta, 1999, vol. 1444, pp. 117–124.PubMedGoogle Scholar
  15. 15.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.CrossRefPubMedGoogle Scholar
  16. 16.
    Tatusova, T.A. and Thomas, L.M., Blast 2 Sequences-A New Tool for Comparing Protein and Nucleotide Sequences, FEMS Microbiol. Lett., 1999, vol. 174, pp. 247–250.CrossRefPubMedGoogle Scholar
  17. 17.
    Baxevanis, A.D., The Molecular Biology Database Collection 2003 Update, Nucleic Acids Res., 2003, vol. 31, pp. 1–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Marchler, G.H., Mazumder, R., Nikolskaya, A.N., Panchenko, A.R., Rao, B.S., Shoemaker, B.A., Simonyan, V., Song, J.S., Thiessen, P.A., Vasudevan, S., Wang, Y., Yamashita, R.A., Yin, J.J., and Bryant, S.H., CDD: A Curated Entree Database of Conserved Domain Alignments, Nucleic Acids Res., 2003, vol. 31, pp. 383–387.PubMedGoogle Scholar
  19. 19.
    Tusnady, G.E. and Simon, I., Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to Topology Prediction, J. Mol. Biol., 1998, vol. 283, pp. 489–506.CrossRefPubMedGoogle Scholar
  20. 20.
    Thompson, J., Higgins, D.G., and Gibson, T.J., Clustal W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.PubMedGoogle Scholar
  21. 21.
    Bailey, T.L. and Gribskov, M., Methods and Statistics for Combining Motif Match Scores, J. Comput. Biol., 1998, vol. 5, pp. 211–221.PubMedCrossRefGoogle Scholar
  22. 22.
    Marchler-Bauer, A., Anderson, J.B., de Weese-Scott, C., Fedorova, N.D., Geer, L.Y., He, S., Hurwitz, D.I., Jackson, J.D., Jacobs, A.R., Lanczycki, C.J., Liebert, C.A., Liu, C., and Madej, T., The Rice Full-Length cDNA Consortium. Collection, Mapping, and Annotation of Over 28 000 cDNA Clones from Japonica Rice, Science, 2003, vol. 301, pp. 376–379.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • M. Choura
    • 1
  • A. Rebai
    • 1
  1. 1.Bioinformatics UnitCentre of Biotechnology of SfaxSfaxTunisia

Personalised recommendations