Advertisement

Russian Journal of Plant Physiology

, Volume 52, Issue 6, pp 724–730 | Cite as

The Role of Cryptochrome 1 and Phytochromes in the Control of Plant Photomorphogenetic Responses to Green Light

  • I. F. Golovatskaya
Article

Abstract

We studied the role of cryptochrome 1 (CRY1) and phytochromes in the photomorphogenetic responses of plants to the middle-wavelength region of photosynthetically active radiation. A comparison was performed of green light (GL) action on growth, GA activity and IAA and ABA contents during seedling deetiolation of two Arabidopsis thaliana (L.) Heynh lines of Landsnerg erecta ecotype (wild type Ler and mutant hy4) and of Phaseolus vulgaris L. It was shown that a growth responses of Ler hypocotyls to GL of 515 nm and Ler cotyledons to GL of 542 nm were weaker than those of the hy4 mutant defected in the CRY1 synthesis. Far-red light (730 nm) neutralized the effect of GL (533 nm) on the phytohormone balance in the primary kidney bean leaves. The data obtained permit a supposition that plants possess several photoregulatory systems functioning under GL of higher (515 nm) and lower emission energy (542–553 nm). A possible operation of GL receptors, other than cryptochrome 1 and phytochromes, is discussed.

Key words

Arabidopsis thaliana Phaseolus vulgaris green light cryptochrome 1 phytochromes gibberellins ABA IAA 

Abbreviations

CRY1

cryptochrome 1

D

darkness

E

irradiance

FRL

far-red light

BL

blue light

GL

green light

PAR

photosynthetically active radiation

PHfr

active phytochrome form

PHr

inactive phytochrome form

RL

red light

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Konev, S.V. and Volotovsky, I.D., Fotobiologiya (Photobiology), Minsk: Bel. Gos. Univ., 1974.Google Scholar
  2. 2.
    Voskresenskaya, N.P., Photoregulatory Reactions and Activity of the Photosynthetic Apparatus, Fiziol. Rast. (Moscow), 1987, vol. 34, pp. 669–684 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  3. 3.
    Briggs, W.R. and Olney, M.A., Photoreceptors in Plant Photomorphogenesis to Date. Five Phytochromes, Two Cryptochromes, One Phototropin, and One Superchrome, Plant Physiol., 2001, vol. 125, pp. 85–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Imaizumi, T., Kanegae, T., and Wada, M., Cryptochrome Nucleocytoplasmic Distribution and Gene Expression Are Regulated by Light Quality in the Fern Adiantum capillus-veneris, Plant Cell, 2000, vol. 12, pp. 81–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Sternberg, M.B., Possible Role of Growth Substances and Nucleic Acids in the Mechanism of Phytochrome Action, Regulyatory rosta rastenii i nukleinovyi obmen (Regulators of Plant Growth and Nucleic Metabolism), Moscow: Nauka, 1965, pp. 65–80.Google Scholar
  6. 6.
    Kabachevskaya, E.M., Lyakhnovich, G.V., and Volotovsky, I.D., Regulation of Phospholipase D Activity by Light and Phytohormones in Oat Seedlings, Fiziol. Rast. 2004, vol. 51, pp. 855–859 (Russ. J. Plant Physiol., Engl. Transl., pp. 769–773).Google Scholar
  7. 7.
    Dubovskaya, L.V., Molchan, O.V., and Volotovsky, I.D., Photoregulation of the Endogenous cGMP Content in Oat Seedlings, Fiziol. Rast. (Moscow), 2001, vol. 48, pp. 26–29 (Russ. J. Plant Physiol., Engl. Transl., pp. 19–22).Google Scholar
  8. 8.
    Neuhaus, G., Bowler, C., Kern, R., and Chua, N.-H., Calcium/Calmodulin-Dependent and Independent Phytochrome Signal Transduction Pathways, Cell, 1993, vol. 73, pp. 937–952.CrossRefPubMedGoogle Scholar
  9. 9.
    Malec, P., Yahalom, A., and Chamovitz, A., Identification of a Light-Regulated Protein Kinase Activity from Seedlings of Arabidopsis thaliana, Photochem. Photobiol., 2002, vol. 75, pp. 178–183.CrossRefPubMedGoogle Scholar
  10. 10.
    Karnachuk, R.A., Tishchenko, S.Yu., and Golovatskaya, I.F., Endogenous Phytohormones and Regulation of Morphogenesis of Arabidopsis thaliana by Blue Light, Fiziol. Rast. (Moscow), 2001, vol. 48, pp. 262–267 (Russ. J. Plant Physiol., Engl. Transl., pp. 226–230).Google Scholar
  11. 11.
    Karnachuk, R.A., Golovatskaya, I.F., Efimova, M.V., and Khripach, V.A., The Effect of Epibrassinolide on Arabidopsis Seedling Morphogenesis and Hormonal Balance under Green Light, Fiziol. Rast. (Moscow), 2002, vol. 49, pp. 591–595 (Russ. J. Plant Physiol., Engl. Transl., pp. 530–533).Google Scholar
  12. 12.
    Brien, T.O., Beall, F.D., and Smith, H.S., De-Etiolation and Plant Hormones, Encyclopedia of Plant Physiology. New Series, Berlin: Springer-Verlag, 1985, vol. 11, pp. 282–307.Google Scholar
  13. 13.
    Hutchison, C. and Kieber, J.J., Cytokinin Signaling in Arabidopsis, Plant Cell, 2002, vol. 14, pp. 47–59.Google Scholar
  14. 14.
    Zubo, Ya.O., Selivankina, S.Yu., Yamburenko, M.V., Zubkova, N.K., Kulaeva, O.N., and Kusnetsov, V.V., Cytokinins Activate Transcription of Chloroplast Genes, Dokl. Akad. Nauk, 2005, vol. 400, pp. 396–399.Google Scholar
  15. 15.
    Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., and Noguchi, T., BAS1: A Gene Regulating Brassinosteroid Levels and Light Responsiveness in Arabidopsis, Proc. Natl. Acad. Sci. USA, 1999, vol. 211, pp. 5316–5323.Google Scholar
  16. 16.
    Kang, J.G., Yan, J., Kim, D.H., Chung, K.S., Fuijoka, S., Kim, J.I., Dae, H.W., Yoshida, S., Takatsuto, S., Song, P.S., and Park, C.M., Light and Brassinosteroid Signals Are Integrated via a Dark Induced Small G Protein in Etiolated Seedling Growth, Cell, 2001, vol. 105, pp. 625–636.CrossRefPubMedGoogle Scholar
  17. 17.
    Mohr, H., Regulation der Enzymsynthese bei den Hoheren Pflanze, Naturwiss. Rundschau., 1970, vol. 23, pp. 187–195.Google Scholar
  18. 18.
    Lozhnikova, V.N., Khlopenkova, L.P., and Chailakhyan, M.Kh., Metody opredeleniya fitogormonov, ingibitorov rosta, defoliantov i gerbitsidov (Methods for Determination of Phytohormones, Growth Inhibitors, Defoliants, and Herbicides), Rakitin, Yu.V., Ed., Moscow: Nauka, 1973, pp. 50–58.Google Scholar
  19. 19.
    Atzorn, R. and Wetter, E.W., The Role of Endogenous Gibberellins in the Formation of α-Amylase by Aleurone Layers of Germination Barley Caryopses, Planta, 1983, vol. 159, pp. 289–298.Google Scholar
  20. 20.
    Chrispeels, T.J. and Varner, J.E., Gibberellic Acid-Enhanced Synthesis and Release of α-Amylase and Ribonuclease by Isolated Barley Aleurone Layers, Plant Physiol., 1967, vol. 43, p. 398.Google Scholar
  21. 21.
    Kefeli, V.I., Turetskaya, R.Kh., Kof, E.M., and Vlasov, P.V., Determination of Biological Activity of Free Auxins and Growth Inhibitors in Plant Material, Metody opredeleniya fitogormonov, ingibitorov rosta, defoliantov i gerbitsidov (Methods for Determination of Phytohormones, Growth Inhibitors, Defoliants, and Herbicides), Rakitin, Yu.V., Ed., Moscow: Nauka, 1973, pp. 7–22.Google Scholar
  22. 22.
    Kudoyarova, G.R., Veselov, S.Yu., Karavaiko, N.N., Gyulizade, V.Z., Cheredova, E.P., Mustafina, A.R., Moshkov, I.E., and Kulaeva, O.N., Immunoenzyme Test System for Assaying Cytokinins, Fiziol. Rast. (Moscow), 1990, vol. 37, pp. 193–199 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  23. 23.
    Jackson, J.A. and Jenkins, G.I., Extension-Growth Responses and Expression of Flavonoid Biosynthesis Genes in the Arabidopsis hy4 Mutant, Planta, 1995, vol. 197, pp. 233–239.CrossRefPubMedGoogle Scholar
  24. 24.
    Lin, C., Robertson, D.E., Ahmad, M., Raibecas, A.A., Jorns, M.S., Dutton, P.L., and Cashmore, A.R., Association of the Flavin Adenine Dinucleotide with the Arabidopsis Blue Light Receptor CRY1, Science, 1995, vol. 269, pp. 968–970.PubMedGoogle Scholar
  25. 25.
    Ahmad, M., Jarillo, J.A., and Cashmore, A.R., Chimeric Protein between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability, Plant Cell, 1998, vol. 10, pp. 197–208.CrossRefPubMedGoogle Scholar
  26. 26.
    Hedden, P. and Kamyia, Y., Gibberellin Biosynthesis: Enzymes, Genes and Their Regulation, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 431–460.CrossRefPubMedGoogle Scholar
  27. 27.
    Karnachuk, R.A., Negretskii, V.A., and Golovatskaya, I.F., Hormonal Balance in the Plant Leaf under Light Differing in Quality, Fiziol. Rast. (Moscow), 1990, vol. 37, pp. 527–534 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  28. 28.
    Karnachuk, R.A., Postovalova, V.M., Belen'kaya, E.V., and Zhulanova, S.G., Phytochrome Control of 14C-Carbohydrates in Plants, Fiziol. Rast. (Moscow), 1978, vol. 25, pp. 268–271 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  29. 29.
    Reid, J.B., Botwright, N.A., Smith, J.J., O'Neill, D.P., and Kerckhos, L.H.J., Control of Gibberellin Levels and Gene Expression during De-Etiolation in Pea, Plant Physiol., 2002, vol. 128, pp. 734–741.CrossRefPubMedGoogle Scholar
  30. 30.
    Weatherwax, S.C., Ong, M.S., Degenhardt, J., Bray, E.A., and Tobin, E.M., The Interaction of Light and Abscisic Acid in the Regulation of Plant Gene Expression, Plant Physiol., 1996, vol. 111, pp. 363–370.CrossRefPubMedGoogle Scholar
  31. 31.
    Chory, J., Chatterjee, M., Cook, R.K., Elich, T., Frankhauser, C., Li, J., Nagpal, P., Ne, M., Pepper, A., Poole, D., Reed, J., and Vitart, V., From Seed Germination to Flowering, Light Controls Plant Development via the Pigment Phytochrome, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 12066–12071.CrossRefPubMedGoogle Scholar
  32. 32.
    Neff, M. and Chory, J., Genetic Interactions between Phytochrome A, Phytochrome B and Cryptochrome 1 during Arabidopsis Development, Plant Physiol., 1998, vol. 118, pp. 27–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Ahmad, M. and Cashmore, A.R., The Blue-Light Receptor Cryptochrome 1 Shows Functional Dependence on Phytochrome A or Phytochrome B in Arabidopsis thaliana, Plant J., 1997, vol. 11, pp. 421–427.CrossRefPubMedGoogle Scholar
  34. 34.
    Casal, J.J. and Boccalandro, H., Coaction between Phytochrome B and HY4 in Arabidopsis thaliana, Planta, 1995, vol. 197, pp. 213–218.PubMedGoogle Scholar
  35. 35.
    Casal, J.J., Phytochromes, Cryptochromes, Phototropin: Photoreceptor Interaction in Plants, Photochem. Photobiol., 2001, vol. 71, pp. 1–11.Google Scholar
  36. 36.
    Hennig, L., Poppe, C., Sweere, U., Martin, A., and Schafer, E., Negative Interference of Endogenous Phytochrome B with Phytochrome A Function in Arabidopsis, Plant Physiol., 2001, vol. 125, pp. 1036–1044.CrossRefPubMedGoogle Scholar
  37. 37.
    Hennig, L., Funk, M., Whitelam, G.C., and Schafer, E., Functional Interaction of Cryptochrome 1 and Phytochrome D, Plant J., 1999, vol. 20, pp. 289–294.PubMedGoogle Scholar
  38. 38.
    Vicente, C. and Garcia, I., Decrease in Phytochrome Pelletability Induced by Green + Far-Red Light in Trifolium repens, Biochem. Biophys. Res. Commun., 1981, vol. 100, pp. 17–22.CrossRefPubMedGoogle Scholar
  39. 39.
    Tanada, T., Interaction of Green or Red Light with Blue Light on the Dark Closure Albizzia pinnules, Physiol. Plant., 1984, vol. 61, pp. 35–37.Google Scholar
  40. 40.
    Konjevic, R., Khurana, J.P., and Poff, K.L., Analysis of Multiple Photoreceptor Pigments for Phototropism in a Mutant of Arabidopsis thaliana, Photochem. Photobiol., 1992, vol. 55, pp. 789–792.PubMedGoogle Scholar
  41. 41.
    Konjevic, R., Steinitz, B., and Poff, K.L., Dependence of the Phototropic Response of Arabidopsis thaliana on Fluence Rate and Wavelength, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 9876–9880.PubMedGoogle Scholar
  42. 42.
    Steinitz, B., Ren, Z., and Poff, K.L., Blue-and Green-Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings, Plant Physiol., 1985, vol. 77, pp. 248–251.CrossRefPubMedGoogle Scholar
  43. 43.
    Liscum, E. and Briggs, W.R., Mutations in the NPH1 Locus of Arabidopsis Disrupt the Perception of Phototropic Stimuli, Plant Cell, 1995, vol. 7, pp. 473–485.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • I. F. Golovatskaya
    • 1
  1. 1.Department of Plant Physiology and Biotechnology, Faculty of Biology and SoilTomsk State UniversityTomskRussia

Personalised recommendations