Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Periodic Orbits and Bifurcations of the Vibrational Modes of the Ozone Molecule at High Energies

The study of quantum states near the dissociation threshold is necessary both to understand the formation of molecules and to explore accurately chemical reactions. Quantum calculations of highly excited states can be complemented by methods of nonlinear classical mechanics that help revealing the stable modes of molecular vibrations and their transformations (bifurcations) during excitation of a molecule. The classical approach is particularly efficient at high energies where due to their high density, strong state mixing could occur, and simple assignment in terms of the standard normal modes becomes impossible. In this work we present first results for periodic orbits of the main isotopologue of the ozone molecule (16O3) using recent accurate ab initio potential energy surface. Along with the principle families of the periodic orbits corresponding to the symmetric, antisymmetric, and bending types of molecular vibrations, we have located bifurcations corresponding to the transition to local modes as well as resonance orbits that are responsible for new types of vibrational motions in the high energy range. The classical trajectories of nuclei and their correspondence to the wave functions of the quantum states are also discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Barbe, S. Mikhailenko, E. Starikova, et al., J. Quant. Spectr. Radiat. Transfer, 130, 172–190 (2013).

  2. 2.

    V. B. Pavlov-Verevkin, Russ. Chem. Rev., 61, No. 1, 1–14 (1992).

  3. 3.

    V. I. Arnold, Catastrophe Theory, Springer, Berlin (1984).

  4. 4.

    L. Xiao and M. E. Kellman, J. Chem. Phys., 90, No. 11, 6086–6098 (1989).

  5. 5.

    V. Tyng and M. E. Kellman, J. Chem. Phys., 130, 144311 (2009).

  6. 6.

    B. Zhilinskii, Encyclopedia of Complexity and Systems Science, R. Meyers, ed., Springer, New York (2009).

  7. 7.

    H. Ishikawa, R. W. Field, S. C. Farantos, et al., Annu. Rev. Phys. Chem., 50, 443–484 (1999).

  8. 8.

    M. Joyeux, S. Y. Grebenshchikov, J. Bredenbeck, et al., Adv. Chem. Phys., 130, 267–303 (2005).

  9. 9.

    A. Weinstein, Inv. Math., 20, 47–57 (1973).

  10. 10.

    J. Moser, Commun. Pure Appl. Math., 29, 727–747 (1976).

  11. 11.

    G. S. Ezra, Advance in Classical Trajectory Methods, JAI Press, Greenwich (1998).

  12. 12.

    S. C. Farantos, Computer Phys. Commun., 108, 240–258 (1998).

  13. 13.

    M. Joyeux, S. C. Farantos, and R. Schinke, J. Phys. Chem., 106, 5407–5421 (2002).

  14. 14.

    S. C. Farantos, R. Schinke, H. Guo, et al., Chem. Rev., 109, 4248–4271 (2009).

  15. 15.

    F. Mauguiere, Vl. Tyuterev, and S. C. Farantos, Chem. Phys. Let., 494, 163–169 (2010).

  16. 16.

    F. Mauguiere, M. Rey, Vl. Tyuterev, et al., J. Chem. Phys. A., 114, 9836–9847 (2010).

  17. 17.

    M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York (1990).

  18. 18.

    M. S. Child and R. T. Lawton, Faraday Discussions of the Chemical Society, 71, 273–285 (1981).

  19. 19.

    M. E. Kellman, J. Chem. Phys., 83, No. 8, 3843–3858 (1985).

  20. 20.

    P. Fabian and M. Dameris, Ozone in the Atmosphere: Basic Principles, Natural and Human Impacts, Springer, Heidelberg, New York, Dordrecht, London (2014).

  21. 21.

    Y. Q. Gao and R. Marcus, Science, 293, 259–263 (2001). 1925

  22. 22.

    A. Campargue, S. Kassi, D. Romanini, et al., J. Mol. Spectrosc., 240, 1–13 (2006).

  23. 23.

    A. Campargue, A. Barbe, M.-R. De Backer-Barilly, et al., Phys. Chem. Chem. Phys., 10, 2925–2946 (2008).

  24. 24.

    Y. L. Babikov, S. N. Mikhailenko, A. Barbe, and V. G. Tyuterev, J. Quant. Spectrosc. Radiat. Transfer, 145, 169–196 (2014).

  25. 25.

    A. Alijah, D. Lapierre, and V. Tyuterev, Mol. Phys., 116, 2660–2670 (2018).

  26. 26.

    V. G. Tyuterev, R. Kochanov, A. Campargue, et al., Phys. Rev. Lett., 113, 143002 (2014).

  27. 27.

    D. Lapierre, A. Alijah, R. Kochanov, et al., Phys. Rev. A, 94, 042514 (2016).

  28. 28.

    V. G. Tyuterev, R. V. Kochanov, and S. A. Tashkun, J. Chem. Phys., 146, 064304 (2017).

  29. 29.

    V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, et al., J. Chem. Phys., 139, 134307 (2013).

  30. 30.

    G. Guillon, P. Honvault, R. Kochanov, and V. Tyuterev, J. Phys. Chem. Lett., 9, 1931–1936 (2018).

  31. 31.

    P. Honvault, G. Guillon, R. Kochanov, and V. Tyuterev, J. Chem. Phys., 149, 214304 (2018).

  32. 32.

    C. H. Yuen, D. Lapierre, F. Gatti, et al., J. Phys. Chem. A., 123, 7733–7743 (2019).

  33. 33.

    R. T. Lawton and M. S. Child, Mol. Phys., 44, 709–723 (1981).

  34. 34.

    I. N. Kozin, D. A. Sadovskii, and B. I. Zhilinskii, Spectrochimica Acta A, 61, 2867–2885 (2004).

  35. 35.

    Vl. G. Tyuterev, S. A. Tashkun, D. W. Schwenke, et al., Chem. Phys. Lett., 316, No. 3/4, 271–279 (2000).

  36. 36.

    F. Holka, P. G. Szalay, T. Müller, and V. G. Tyuterev, J. Phys. Chem. A, 114, 9927–9935 (2010).

Download references

Author information

Correspondence to O. V. Egorov or F. Mauguiere or VI. G. Tyuterev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 154–161, October, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Egorov, O.V., Mauguiere, F. & Tyuterev, V.G. Periodic Orbits and Bifurcations of the Vibrational Modes of the Ozone Molecule at High Energies. Russ Phys J (2020). https://doi.org/10.1007/s11182-020-01923-w

Download citation

Keywords

  • ozone
  • periodic orbits
  • dissociation
  • nonlinear effects
  • bifurcations
  • phase portrait
  • resonance coupling
  • localization of wave functions
  • symmetry breaking effect