Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stress-strain State of Dispersion-hardened Aluminum Tube Under External and Internal Pressure

The paper presents research into the stress-strain state of a heavy-walled aluminum alloy tube strengthened by incoherent nanoparticles, subjected to the external and internal pressure. Mathematical simulation shows that one and the same localization of the plastic region corresponds to two different cases of the strass-strain state of the tube walls. When the internal pressure is lower than the external, the stress-strain state is characterized by the wall compression in a tangential direction. In the opposite case, tangent tensile stresses appear in the tube wall.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. M. Neklyudov, L. S. Ozhigov, A. S. Mitrofanov, et al., Strength Mater., 43, No. 2, 224–229 (2011).

  2. 2.

    V. V. Berezovskii, A. A. Shavnev, S. B. Lomov, and Yu. A. Kurganova, Aviatsionnye materialy i tekhnologii, No. 6. 17–23 (2014).

  3. 3.

    O. V. Chudina, Tekhnologiya Metallov, No. 6, 16–23 (2003).

  4. 4.

    L. I. Tushinskii, Theory and Technology of Hardening of Metal Alloys [in Russian], Nauka, Novosibirsk (1990).

  5. 5.

    F. L. Matthews and R. D. Rawlings, Composite Materials [Russian translation], Tekhnosfera, Moscow (2004).

  6. 6.

    Yu. S. Karabasov, ed., Advanced Materials, MISIS, Moscow (2002).

  7. 7.

    O. Matvienko, O. Daneyko, and T. Kovalevskaya, Acta Metall. Sin. Engl., 31, No. 12, 1297–1304 (2018).

  8. 8.

    A. R. Luts and I. A. Galochkina, luminum Composite Alloys [in Russian], Samara, 2013.

  9. 9.

    V. Arnhold and K. Hummert, New Materials by Mechanical Alloying Techniques, E. Arzt and L. Schult, eds., DGM Informationsgeselischaft Verlag, Oberursel (1989).

  10. 10.

    J. H. Weber and R. D. Schelleng, Dispersion Strengthened Aluminum Alloys, Y.-W. Kim and W. M. Griffith, Eds. TMS, Warrendale (1988).

  11. 11.

    M. M. Boopathi, K. P. Arulshri, and N. Iyandurai, Am. J. Appl. Sci., 10, No. 17, 219–229 (2013).

  12. 12.

    H. F. El-Labban, M. Abdelaziz, and E. R. Mahmoud, Am. J. Nanotech., 4, No. 1, 235–247 (2013).

  13. 13.

    E. Orowan, Proc. Symp. on Int. Stresses in Metals, (1948), pp. 451–454.

  14. 14.

    M. F. Ashby and K. Johnson, Materials and Design, the Art and Science of Materials Selection in Product Design. Butterworth Heinemann, Oxford (2002).

  15. 15.

    F. J. Hymphreys and J. W. Martin, Philos. Mag., 16, No. 143, 927–957 (1967).

  16. 16.

    A. T. Stewart and J. W. Martin, Acta Met., 23, 1–7 (1975).

  17. 17.

    F. J. Hymphreys and P. B. Hirsch, Proc. Royal Soc. London A, 318, No. 1532, 73–92 (1970).

  18. 18.

    O. Matvienko, O. Daneyko, and T. Kovalevskaya, in: MATEC Web Conf. XIV Int. Workshop “High Energy and Special Materials: Demilitarization, Antiterrorism and Civil Application,” 243, Tomsk (2018). https://doi.org/10.1051/matecconf/201824300008.

  19. 19.

    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 62, No. 4, 720–728 (2019).

  20. 20.

    T. A. Kovalevskaya, O. I. Daneyko, N. A. Kulaeva, and S. N. Kolupaeva, Russ. Phys. J., 58, No. 3, 343–348 (2015)

  21. 21.

    O. I. Daneyko and T. A. Kovalevskaya, Russ. Phys. J., 61, No. 9, 1687–1694 (2019).

  22. 22.

    O. I. Daneyko, T. A. Kovalevskaya, and O. V. Matvienko, Russ. Phys. J., 61, No. 7, 1229–1235 (2018).

  23. 23.

    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 60, No. 2, 236–248 (2017).

  24. 24.

    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 60, No. 4, 562–569 (2017).

  25. 25.

    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 60, No. 7, 1233–1242 (2017).

  26. 26.

    A. G. Gorshkov, E. I. Starovoitov, and D. V. Tarlakovskii, Theory of Elasticity and Plasticity [in Russian], Fizmatlit, Moscow (2002).

  27. 27.

    N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).

  28. 28.

    T. A. Kovalevskaya, I. V. Vinogradova, and L. E. Popov, Mathematical Simulation of Plastic Deformation of Heterophase Alloys [in Russian], TSU, Tomsk (1992).

  29. 29.

    O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 52. No. 9/2, 125–131 (2009).

  30. 30.

    O. I. Daneyko, T. A. Kovalevskaya, and N. A. Kulaeva, Russ. Phys. J., 60, No. 3, 508–514 (2017).

  31. 31.

    O. I. Daneyko, T. A. Kovalevskaya, N. A. Kulaeva, et al., Russ. Phys. J., 60, No. 5, 821–829 (2017).

  32. 32.

    S. P. Timoshenko and J. N. Goodier, Theory of Elasticity. McGraw Hill, New York (2010).

  33. 33.

    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 61, No. 4, 730–742 (2018).

  34. 34.

    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 61, No. 5, 962–973 (2018).

  35. 35.

    L. J. Polmear, Light Alloys: Metallurgy of Lights Metals, John Willey and Sons, Australia (1995).

  36. 36.

    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 61, No. 8, 1520–1528 (2018).

Download references

Author information

Correspondence to O. V. Matvienko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 50–57, October, 2019

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Daneyko, O.I. & Kovalevskaya, T.A. Stress-strain State of Dispersion-hardened Aluminum Tube Under External and Internal Pressure. Russ Phys J (2020). https://doi.org/10.1007/s11182-020-01910-1

Download citation

Keywords

  • dispersion-hardened material
  • aluminum alloys
  • nanoparticle
  • plastic deformation
  • mathematical modeling
  • strain hardening