Skip to main content
Log in

Electromagnetic Properties of Pyramids from Positions of Photonics

  • Published:
Russian Physics Journal Aims and scope

The choice of the operating wavelength of electromagnetic radiation is justified for a pyramid considered as an antenna. It is shown that due to the strong dispersion of the refractive index of the pyramid material, there will always be a part of the spectral range, in which the refractive index corresponds to the condition of electromagnetic wave localization (the photonic jet phenomenon). It is shown that the pyramid can simultaneously serve as a transmitting antenna both at the fundamental frequency and at multiple frequencies. Our consideration and approach are not limited only to the shape of the Cheops pyramid and can be generalized to all other shapes of known pyramids. It can be assumed that, despite the difference in the pyramid shapes throughout the world, such structures can play the role of antennas subject to the principle of mesoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Silliotty, The Pyramids. Egypt Pocket Guide, The American University in Cairo Press (2003).

    Google Scholar 

  2. G. P Flanagan and J. A. Marchello, Pyramid Power: The Science of the Cosmos (The Flanagan Revelations), Phi Sciences Press (1973).

  3. A. A. Timofeeva, Elektrosvyaz, Vyp. 1, 2–9 (2007).

    Google Scholar 

  4. J. DeSalvo, The Complete Pyramid Sourcebook. Great Pyramid of Giza Research Association, http://sentinelkennels. com/GPimages/CompletePyramidSourcebook.pdf.

  5. M. Arulmani and M. R. Hema Latha, Int. J. Sci. Eng. Res., 4, Iss. 10, 977–1024 (2013).

  6. K. Spence, Nature, 408, 320–324 (2000).

    Article  ADS  Google Scholar 

  7. I. V. Minin and O. V. Minin, Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit, Springer, Berlin (2016).

    Book  Google Scholar 

  8. I. V. Minin and O. V. Minin, Vestn. NGU, 12, Vyp. 4, 7–12 (2014).

  9. I. V. Minin, O. V. Minin, and Y. E. Geintz, Ann. Phys., 527, No. 7–8, 491–497 (2015).

    Article  MathSciNet  Google Scholar 

  10. B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. V. Minin, et al., Opt. Mater. Express, 7, 1820 (2017).

    Article  ADS  Google Scholar 

  11. Dimensions of the Cheops-pyramid (Khufu's pyramid), http://www.cheops-pyramide.ch/khufu pyramid/khufunumbers.html.

  12. S. O. Nelson, J. Microwave Power Electromagn. Energy, 31, 215–220 (1996).

    Article  Google Scholar 

  13. O. B. Olatinsu, D. O. Olorode, and K. F. Oyedele, Adv. Appl. Sci. Res., 4, No. 6, 150–158 (2013).

    Google Scholar 

  14. Electromagnetic Sounder Experiments at the Pyramids of Giza. Prepared for: Office of International Programs, National Science Foundation, Washington, D. C. 20550 under the NSF Grant No. GF-38767.

  15. V. B. Boltintsev, Proceed. XII All-Russian Conf. “Radar and Radio Communications”, Moscow (2018).

  16. K. P. Bezrodniy, V. B. Boltintsev, E. M. Efanov, et al., World Tunnel Congress’99, Norway, Oslo (1999).

    Google Scholar 

  17. J. Davidovits, The Pyramids: An Enigma Solved, Dorset Press, N. Y. (1988).

    Google Scholar 

  18. M. W. Barsoum, J. Am. Ceram. Soc., 89, No. 12, 3788–3796 (2004).

    Article  Google Scholar 

  19. I. Túnyi and I. A. El-hemaly, Europhys. News, 43, No. 6, 28–31 (2012).

    Article  Google Scholar 

  20. R. J. Knight and A. Nur, Geophysics, 52, No. 5, 644–654 (1987).

    Article  ADS  Google Scholar 

  21. F. Zalewski, J. Geolog. Resource Eng., 4, 153–168 (2017).

    Google Scholar 

  22. A. R. David, Pyramid Builders of Ancient Egypt: A Modern Investigation of Pharaohs Workforce, Second Edition, Routledge (2002).

    Book  Google Scholar 

  23. W. J. Tait, Archaeological J., 144, No. 1, 447–448 (1987).

    Google Scholar 

  24. R. P. Singh, M. P. Singh, and T. Lal, Ann. Geophys., 33, No. 1, 121–140 (1980).

    Google Scholar 

  25. S. Marshall, Time and Mind, 9, No. 1, 43–56 (2016).

    Article  Google Scholar 

  26. K. Morishima, M. Kuno, A. Akira Nishio, et al., Nature, 552, 386–390 (2017).

    Article  ADS  Google Scholar 

  27. G. Dash, Aeragram, 16, 8–14 (2015).

    Google Scholar 

  28. H. D. Bui, Imaging the Cheops Pyramid, Springer Science & Business Media (2011).

  29. E. Verhagen, L. Kuipers, and A. Polman, Nano Lett., 10, No. 9, 3665–3669 (2010).

    Article  ADS  Google Scholar 

  30. K. Tanaka, K. Katayama, and M. Tanaka, Opt. Express, 18, No. 2, 787–798 (2010).

    Article  ADS  Google Scholar 

  31. M. J. Felix, J. Muldera, A. Somintac, et al., Sci. Adv. Mater., 9, No. 2, 214–219 (2017).

    Article  Google Scholar 

  32. V. I. Koshelev, Sh. Lyu, and A. A. Petkun, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 9/2, 54–59 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Minin, O. V. Minin or L. Yue.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 12–18, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minin, I.V., Minin, O.V. & Yue, L. Electromagnetic Properties of Pyramids from Positions of Photonics. Russ Phys J 62, 1763–1769 (2020). https://doi.org/10.1007/s11182-020-01904-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01904-z

Keywords

Navigation