Advertisement

Features of Radiation Changes in Electrical Properties of InAlN/GaN Hemts

  • 3 Accesses

The effect of the proton, electron, gamma - rays, and fast neutron irradiation on the parameters of InAlN/GaN HEMT structures is analyzed. The features of initial electronic properties of the InAlN and AlGaN barrier layers with a change in their composition, as well as the change in these properties when exposed to high-energy radiation are considered with taking into account the compositional dependence of the charge neutrality level energy position in the energy spectrum of these barrier layers.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    A. Ionascut-Nedelcescu, C. Carlone, A. Houdayer, et al., IEEE Trans. Nucl. Sci., 49(6), 2733 (2002).

  2. 2.

    D. C. Look, D. C. Reynolds, J. H. Hemsky, et al., Phys. Rev. Lett., 79(12), 2273 (1997).

  3. 3.

    J. Nord, K. Nordlund, J. Keinonen, et al., Nucl. Instrum. Methods Phys. Res. B, 202, 93 (2003).

  4. 4.

    H. Y. Xiao, F. Gao, X. T. Zu, and W. J. Weber, J. Appl. Phys., 105, 123527 (2009).

  5. 5.

    S. J. Pearton, Y.-H. Hwang, and F. Ren, ECS Transactions, 66(1), 3 (2015).

  6. 6.

    J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, London (1996).

  7. 7.

    J. F. Ziegler, SRIM, The Stopping and Range of Ions in Matter, Electronic resource, URL: http://www.srim.org (10.06.2019).

  8. 8.

    V. N. Brudnyi, N. G. Kolin, and L. S. Smirnov, Semiconductors, 41(9), 1011 (2007).

  9. 9.

    V. N. Brudnyi, S. N. Grinyaev, and N. G. Kolin, Semiconductors, 37(5), 537 (2003).

  10. 10.

    V. N. Brudnyi, A. V. Kosobutskii, and N. G. Kolin, Russ. Phys. J., 51, No. 12, 1270 (2008).

  11. 11.

    V. N. Brudnyi, A. V. Kosobutskii, and N. G. Kolin, Semiconductors, 43(10), 1271 (2009).

  12. 12.

    V. N. Brudnyi, V. M. Boiko, N. G. Kolin, et al., Semicond. Sci. Technol., 33, 095011 (2018).

  13. 13.

    A. Castaldini, A. Cavallini, L. Polenta, et al., J. Phys. Condens. Matter., 12, 10161 (2000).

  14. 14.

    F. D. Auret, S. A. Goodman, F. K. Koschnick, et al., Appl. Phys. Lett., 74, 407 (1999).

  15. 15.

    F. D. Auret, S. A. Goodman, F. K. Koschnick, et al., Appl. Phys. Lett., 73, 3745 (1998.

  16. 16.

    A. Ya. Polyakov, A. S. Usikov, B. Theys, et al., Solid-State Electron., 44, 1971 (2000).

  17. 17.

    S. J. Pearton and A.Ya. Polyakov, Int. J. Mater. Structural Integrity., 2, 93 (2008).

  18. 18.

    K. C. Collins, A. M. Armstrong, A. A. Allerman, et al., J. Appl. Phys., 122, 235705 (2017).

  19. 19.

    Z. Zhang, E. Farzana, W. Y. Sun, et al., J. Appl. Phys., 118, 155701 (2015).

  20. 20.

    P. N. M. Ngoepe, W. E. Meyer, and F. D. Auret, Mater. Sci. Semicond. Process., 64, 29 (2017).

  21. 21.

    Z. Zhang, A. R. Arehart, E. Cinkilic, et al., Appl. Phys. Lett., 103, 042102 (2013).

  22. 22.

    S. A. Goodman, F. D. Auret, M. J. Legodi, et al., Appl. Phys. Lett., 78, 3815 (2001).

  23. 23.

    N. M. Shmidt, D. V. Davydov, V. V. Emtsev, et al., Phys. Stat. Sol. (b), 216, 533 (1999).

  24. 24.

    Z.-Q. Fang, J. W. Hemsky, D. C. Look, et al., Appl. Phys. Lett., 72, 448 (1998).

  25. 25.

    L. Polenta, Z.-Q. Fang, and D. C. Look, Appl. Phys. Lett., 76, 2086 (2000).

  26. 26.

    C.-W. Wang, B.-S. Soong, J.-Y. Chen, et al., J. Appl. Phys., 88, 6355 (2000).

  27. 27.

    A.Ya. Polyakov, In-Hwan Lee, N. B. Smirnov, et al., J. Appl. Phys., 109, 123703 (2011).

  28. 28.

    Duc Tran Thien, Pozina Galia, Son Nguyen Tien, et al., J. Appl. Phys., 119, 095707 (2016).

  29. 29.

    P. N. M. Ngoepe, W. E. Meyer, F. D. Auret, et al., Physica B, 535, 96 (2018).

  30. 30.

    S. A. Goodman, F. D. Auret, G. Myburg, et al., Mater. Sci. Eng. B, 82, 95 (2001).

  31. 31.

    I-H. Lee, A. Y. Polyakov, E. B. Yakimov, et al., Appl. Phys. Lett., 110, 112102 (2017).

  32. 32.

    V. N. Brudnyi, S. S. Verevkin, A. V. Govorkov, et al., Semiconductors, 46(4), 433 (2012).

  33. 33.

    J. Kuzmik, IEEE Electron Device Lett., 22(11), 510 (2001).

  34. 34.

    I. Rossetto, F. Rampazzo, et al., Proc. of 44-th European Sol. State Device Research Conf. (ESSDERC), Venice, Italy (2014).

  35. 35.

    I. Rossetto, F. Rampazzo, S. Gerardin, et al., Sol.-State Electron., 113, 15 (2015).

  36. 36.

    C.-F. Lo, L. Liu, F. Ren, et al., J. Vac. Sci. Technol. B, 30(4), 041206 (2012).

  37. 37.

    H.-Y. Kim, C. F. Lo, L. Liu, et al., Appl. Phys. Lett., 100, 2107 (2012).

  38. 38.

    C.-F. Lo, L. Liu, F. Ren, et al., J. Vac. Sci. Technol. B, 29(6), 061201 (2011).

  39. 39.

    C.-F. Lo, L. Liu, T. S. Kang, et al., J. Vac. Sci. Technol. B, 30(3), 031202 (2012).

  40. 40.

    S. Ahn, B.-J. Kim, Y.-H. Lin, and F. Ren, J. Vac. Sci. Technol. B, 43(5), 051202 (2016).

  41. 41.

    T. Anderson, A. Koehler, Y.-H. Hwang, et al., J. Vac. Sci. Technol. B, 32(5), 051203 (2014).

  42. 42.

    Y.-S. Hwang, L. Liu, F. Ren, et al., J. Vac. Sci. Technol. B, 31(2), 022206 (2013).

  43. 43.

    H.-Y. Kim, J. Kim, L. Liu, et al., J. Vac. Sci. Technol. B, 31(5), 051210 (2013).

  44. 44.

    M. D. Smith, D. O’Mahony, F. Vitobello, et al., Semicond. Sci. Technol., 31, 025008 (2016).

  45. 45.

    M. D. Smith, Development of InAlN HEMTs for space application: PhD Thesis, University College Cork, Ireland (2016).

  46. 46.

    A.Ya. Polyakov, N. B. Smirnov, A. V. Govorkov, et al., J. Vac. Sci. Technol. B, 30(6), 061207 (2012).

  47. 47.

    N. Dawahre and C. Shen, J. Vac. Sci. Technol. B, 31, 041802 (2013).

  48. 48.

    R. Butte, J-F. Carlin, E. Feltin, et al., J. Phys. D: Appl. Phys., 40, 6328 (2007).

  49. 49.

    Y. Taniyasu, J.-F. Carlin, A. Castiglia, et al., Appl. Phys. Lett., 101, 082113 (2012).

  50. 50.

    M. Goncshorek, J.-F. Carlin, E. Feltin, et al., J. Appl. Phys., 103, 093714 (2008).

  51. 51.

    S. Yamaguchi, M. Kariya, S. Nitta, et al., Appl. Phys. Lett., 76(7), 876 (2000).

  52. 52.

    J. Li, K. B. Nam, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 79(20), 3245 (2001).

  53. 53.

    S. Schulz, M. A. Caro, L.-T. Tan, et al., Appl. Phys. Express., 6(12), 1 (2013).

  54. 54.

    D. C. King, T. D. Veal, P. H. Jefferson, et al., Appl. Phys. Lett., 90, 132105 (2007).

  55. 55.

    S.-C. Lin, C.-T. Kim, X. Liu, et al., Appl. Phys. Express., 5, 031003 (2012).

  56. 56.

    S. X. Li, K. M. Yu, R. E. Jones, et al., Phys. Rev. B, 71, 161201(R) (2005).

Download references

Author information

Correspondence to A. G. Afonin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 106–112, September, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afonin, A.G., Brudnyi, V.N., Brudnyi, P.A. et al. Features of Radiation Changes in Electrical Properties of InAlN/GaN Hemts. Russ Phys J (2020). https://doi.org/10.1007/s11182-020-01888-w

Download citation

Keywords

  • InAlN/GaN high electron mobility transistor
  • radiation resistance
  • charge neutrality level