Advertisement

Estimation of Unextendable Dead Time Duration in a Flow of Physical Events by the Method of Moments

  • L. A. Nezhel’skayaEmail author
  • E. F. Sidorova
MATHEMATICAL PROCESSING OF PHYSICS EXPERIMENTAL DATA

We study a synchronous generalized doubly stochastic flow of the second order with unextendable dead time of fixed duration, which is an adequate mathematical model of a flow of physical events (photons, electrons, and other elementary particles). An estimation of the duration of the unobservability period is found by the method of moments (MM-estimate) on the basis of observations of the investigated flow under recurrence condition formulated in terms of the joint probability density of durations of intervals between the moments of event occurrence. A numerical study of the estimation quality is carried out by applying a simulation modeling apparatus.

Keywords

recurrent synchronous generalized doubly stochastic flow of the second order unextendable dead time joint probability density recurrence condition MM-estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Cox, Proc. Cambridge Philos. Soc., 51, No. 3, 433–441 (1955).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    G. P. Basharin, V. A. Kokotushkin, and V. A. Naumov, Izv. Akad. Nauk SSSR. Tekh. Kibern., No. 6, 92–99 (1979).Google Scholar
  3. 3.
    M. F. Neuts, J. Appl. Probab., 16, 764–779 (1979).MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. M. Lucantoni, Commun. Statist.-Stoch. Mod., 1991. V. 7. – P. 1–46.Google Scholar
  5. 5.
    L. Nezhelskaya and E. Sidorova, Commun. Comput. Inform. Sci., 912, 157–171 (2018).CrossRefGoogle Scholar
  6. 6.
    L. A. Nezhel’skaya and E. F. Sidorova, in: Materials of XVIII Int. Conf. named after A. F. Terpugov on Information Technology and Mathematical Modeling (ITMM-2019), Part 2, Tomsk (2019), pp. 358–363.Google Scholar
  7. 7.
    L. A. Nezhel’skaya and E. F. Sidorova, Vestn. Tomsk. Gosud. Univ. Upravl., Vych. Tekh. Inform., No. 45, 30–41 (2018).Google Scholar
  8. 8.
    L. Nezhel’skaya, Commun. Comput. Inform. Sci., 487, 342–350 (2014).CrossRefGoogle Scholar
  9. 9.
    A. M. Gortsev, L. A. Nezhel’skaya, and T. I. Shevchenko, Russ. Phys. J., 36, No. 12, 1153–1157 (1993).CrossRefGoogle Scholar
  10. 10.
    L. Nezhel’skaya, Commun. Comput. Inform. Sci., 564, 141–151 (2015).CrossRefGoogle Scholar
  11. 11.
    A. M. Gortsev and L. A. Nezhel’skaya, Telecommun. Radio Eng., 50, No. 1, 56–63 (1996).Google Scholar
  12. 12.
    I. V. Bushlakov, A. M. Gortsev, and L. A. Nezhel’skaya, Avtom. Telemekh., 9, 76–93 (2008).Google Scholar
  13. 13.
    V. V. Apanasovich, A. A. Kolyada, and A. F. Chernyavskii, Statistical Analysis of Random Flows in Physical Experiment [in Russian], Universitetskoe, Minsk (1988).Google Scholar
  14. 14.
    J. E. Normey-Rico, Control of Dead-Time Process, Springer Verlag, London (2007).Google Scholar
  15. 15.
    Yu. V. Malinkovskii, Probability Theory and Mathematical Statistics. Part 2. Mathematical Statistics, Publishing House of Francisk Skorina Gomel’ State university, Gomel’ (2004).Google Scholar
  16. 16.
    A. M. Gortsev and L. A. Nezhel’skaya, Vestn. Tomsk. Gosud. Univ., Upravl., Vychisl. Tekh. Inform., No. 1 (14), 13–21 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations