Advertisement

Structure and Phase Composition of Heat-Affected Zone of Austenite Steel After Deformation

  • N. A. PopovaEmail author
  • A. N. Smirnov
  • E. L. Nikonenko
  • N. V. Ababkov
  • N. A. Koneva
Article

The paper presents the transmission electron microscopy (TEM) investigations of the thin film structure and phase composition of the heat-affected zone (HAZ) of a weld joint produced by manual metal arc welding (MMAW) of 0.12C–18Cr–10Ni–1Ti–Fe austenite steel exposed then to plastic deformation. The test machine INSTRON-1185 is used to perform quasi-static tensile tests at room temperature and a 1.7∙10–4 s–1 strain rate up to 5 and 37% deformations. TEM investigations are carried out within the HAZ, at a 1 mm distance to the weld line, in the direction of the parent metal and at 0.5 mm distance to the weld deposit. It is shown that MMAW results in the formation of ε-martensite both in the parent metal and weld deposit regions. In the latter, γ → ε phase transformation occurs faster. Plastic strain ranging between 0–5% throughout the HAZ leads to further γ → ε phase transformation. In the weld deposit of the HAZ region, this phase transformation is also more intensive. Further increase in the degree of plastic strain from 5 to 37% results in γ → ε → α phase transformation and an elastoplastic lattice distortion of the α-phase. The plastic flexure remains in the crystal lattice of the γ-phase. The bulk material in the HAZ region satisfies the following conditions: scalar dislocation density is higher than the excess, and internal shear stresses are higher than long-ranging.

Keywords

manual metal arc welding parent metal weld deposit steel austenite microtwins ε-martensite α- martensite volume fraction scalar and excess dislocation densities internal stresses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Ababkov, N. I. Kashubskii, V. L. Knyaz'kov, et al., Diagnostics, Damage and Repair of High Pressure Boiler Drums [in Russian], Mashinostroenie, Moscow (2011), 256 p.Google Scholar
  2. 2.
    E. A. Ozhiganov, N. A. Popova, A. N. Smirnov, et al., Fundamental'nye problemy sovremennogo materialovedeniya, 13, No. 2, 191–197 (2016).Google Scholar
  3. 3.
    T. F. Volynova, High Manganese Steels and Alloys [in Russian], Metallurgiya, Мoscow (1988), 343 p.Google Scholar
  4. 4.
    E. V. Mel'nikov, E. G. Astafurova, G. G. Maier, and V. A. Moskvina, Izv. Vyssh. Uchebn. Zaved., Fiz., 59, No. 7/2, 164–1682016.Google Scholar
  5. 5.
    M. Okayasu and S. Tomida, Mat. Sci. Eng. A, 684, 712–725 (2017).CrossRefGoogle Scholar
  6. 6.
    I. A. Kurzina, A. I. Potekaev, N. A. Popova, et al., Russ, Phys. J., 61, No. 4, 715-721 (2018).CrossRefGoogle Scholar
  7. 7.
    M. S. Tukeeva, E. V. Mel'nikov, and E. G. Astafurova, Izv. Vyssh. Uchebn. Zaved., Fiz., 53, No. 11/3, 10–13 (2010).Google Scholar
  8. 8.
    I. Yu. Litovchenko, Polekhina N.A., Tyumentsev A.N., et al., Russ, Phys. J., 59, No. 6, 782-787 (2016).CrossRefGoogle Scholar
  9. 9.
    C. Ullrich R. Eckner, L. Krüger, et al., Mat. Sci. Eng. A, 649, 390–399 (2016).CrossRefGoogle Scholar
  10. 10.
    М. Eskandari, A. Zarei-Hanzaki, M. A. Mohtadi-Bonab, et al., Mat. Sci. Eng. A, 674, 514–528 (2016).CrossRefGoogle Scholar
  11. 11.
    Z. H. Cai, H. Ding, Z. Y. Tang, and R. D.K. Misra, Mat. Sci. Eng. A, 676, 289–293 (2016).CrossRefGoogle Scholar
  12. 12.
    D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin, J. Appl. Cryst., 47, 936–947 (2014).CrossRefGoogle Scholar
  13. 13.
    S. A. Akkuzin, I. Yu. Litovchenko, A. N. Tyumentsev, and V. M. Chernov, Russ, Phys. J., 62, No. 4, 698–704 (2019).CrossRefGoogle Scholar
  14. 14.
    I. S. Konovalenko, A. Yu. Nikonov, I. S. Konovalenko, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 6/2, 137–141 (2015).Google Scholar
  15. 15.
    Potekaev A.I., Klopotov A.A., Grinkevich L.S., Klimenov V.A., et al., Russ, Phys. J., 59, No. 7, 971-977 (2016).Google Scholar
  16. 16.
    L. M. Utevskii, Diffraction Electron Microscopy in Metallurgy [in Russian], Metallurgiya, Мoscow (1973), 584 p.Google Scholar
  17. 17.
    P. B. Hirsch, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals [Russian translation], Mir, Moscow (1968), 574 p.Google Scholar
  18. 18.
    N. A. Koneva and E. V. Kozlov, Russ, Phys. J., 34, No. 3, 224–236 (1991).Google Scholar
  19. 19.
    A. N. Smirnov, N. A. Popova, N. V. Ababkov, et al., Fundamental'nye problemy sovremennogo materialovedeniya, 15, No. 3, 434–4412018.Google Scholar
  20. 20.
    N. Koneva, S. Kiseleva, and N. Popova, Structural Evolution and Internal Stress Fields [in Russian], Saarbrucken: Lambert, Academic Publishing, (2017), 148 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • N. A. Popova
    • 1
    Email author
  • A. N. Smirnov
    • 2
    • 3
  • E. L. Nikonenko
    • 1
    • 4
  • N. V. Ababkov
    • 2
    • 3
  • N. A. Koneva
    • 1
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.Kuzbass State Technical UniversityKemerovoRussia
  3. 3.OOO ‘Kuzbasskii tsentr dorozhnykh issledovanii’KemerovoRussia
  4. 4.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations