Electrical Explosion of Wires for Manufacturing Bimetallic Antibacterial Ti–Ag and Fe–Ag Nanoparticles

  • N. V. SvarovskayaEmail author
  • O. V. Bakina
  • A. V. Pervikov
  • K. V. Rubtsov
  • M. I. Lerner

Using a simultaneous electrical explosion of two twisted wires, bimetallic Ti–Ag and Fe–Ag nanoparticles are synthesized, where the component ratios are 76–24 and 75–25, respectively. The resulting nanoparticles are characterized by the methods of X-ray diffraction analysis, transmission electron microscopy, thermal desorption of nitrogen, and microelectrophoresis. It is found out that the synthesized nanoparticles are mainly structured as Janus-nanoparticles, and in nanopowders they form weakly-bonded aggregates and hard agglomerates, where the particles are connected by silver ‘necks’. The negative charge of the particles and their ability towards degassing under ultrasonic action make it possible for the Ti–Ag and Fe–Ag to be used as effective antimicrobial modifiers of water-soluble polymers forming stable gel-like compositions. These compositions possess significant antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria, which exceeds that of similar compositions containing silver nanoparticles only.


electrical explosion of wires nanoparticles titanium iron silver bimetallic nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. V. Bakina, E. A. Glazkova, N. V. Svarovskaya, et al., Mater. Lett., 242, 187–190 (2019).CrossRefGoogle Scholar
  2. 2.
    P. Prasher, M. Singh, and H. Mudila, Biotech., 8, No. 10, 411 (2018).Google Scholar
  3. 3.
    T. L. Botha, E. E. Elemike, S. Horn, et al., Sci. Rep., 9, No. 1, 4169 (2019).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Akinsiku, E. O. Dare, K. O. Ajanaku, et al., Int. J. Biomater., 21, 989–995 (2018).Google Scholar
  5. 5.
    M. Paszkiewicz, A. Golabiewska, A. Pancielejko, et al., J. Nanomater., 2016, 6 (2016).Google Scholar
  6. 6.
    X. Liu, S. Chen, J. K.H. Tsoi, et al., Regenerative Biomater., 4, No. 5, 315–323 (2017).CrossRefGoogle Scholar
  7. 7.
    R. Pokrowiecki, T. Zareba, B. Szaraniec, et al., Int. J. Nanomedicine, 12, 4285 (2017).CrossRefGoogle Scholar
  8. 8.
    V. K. Sharma, K. M.Siskova, and R. Zboril, Interactions of Nanomaterials with Emerging Environmental Contaminants, American Chemical Society, Washigton DC (2013).Google Scholar
  9. 9.
    Al-Asfar A., Z. Zaheer, and E. S. Aazam, J. Photochem. Photobiol. B. Biology, 185, 143–152 (2018).CrossRefGoogle Scholar
  10. 10.
    A. Pervikov, E. Glazkova, and M. Lerner, Phys. Plasmas, 25, No. 7, 070701 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    Z. Markova, P. Novak, J. Haslik, et al., Environmental Sci. Technol., 47, No. 10, 5285–5293 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    C. Langlois, Z. L. Li, J.Yuan, et al., Nanoscale, 4, No. 11, 3381–3388 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    M. I. Lerner, A. V. Pervikov, E. A. Glazkova, et al., Powder Technol., 288, 371–378 (2016).CrossRefGoogle Scholar
  14. 14.
    L. L. Hench, in: Conf. Proc. Ultrastructural Processing of Ceramics, Glasses and Composites, Wiley, New York (1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • N. V. Svarovskaya
    • 1
    Email author
  • O. V. Bakina
    • 1
  • A. V. Pervikov
    • 1
  • K. V. Rubtsov
    • 1
  • M. I. Lerner
    • 1
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations