Advertisement

Heat and Mass Transfer Kinetics in Arc Welding Process

  • Yu. N. SaraevEmail author
  • A. G. Lunev
  • V. M. Semenchuk
  • A. S. Nepomnyashchii
Article
  • 1 Downloads

The paper presents the investigation results of the heat and mass transfer kinetics during shielded metal arc welding (SMAW). It is shown that instability of the electrode melting and metal transfer to the molten pool is mostly caused by a system of forces acting on the metal droplet at the continuous electrode tip. Experiments show that the process instability and spatter of the electrode metal depend on the energy parameters of the SMAW mode. At the same time, the SMAW technology can be significantly improved through the implementation of the energy parameter control by the adaptive pulsed-arc welding method.

Keywords

kinetics heat and mass transfer electrode metal adaptive pulsed-arc welding welding deposition welding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Potap’evskii, Yu. N. Saraev, and D. A. Chinakhov, Steel Welding in Shielding Gases With Consumable Electrode. Future Engineering and Technology [in Russian], TSU, Tomsk (2012), 208 p.Google Scholar
  2. 2.
    A. G. Potap'evskii, Avtomaticheskaya svarka, No. 7, 52–59 (1958).Google Scholar
  3. 3.
    Yu. N. Saraev, Avtomaticheskaya svarka, No. 12, 16–23 (1988).Google Scholar
  4. 4.
    Yu. N. Saraev, Impulse Welding and Weld Deposition [in Russian], A. S. Zubchenko, ed., Nauka, Novosibirsk (1994), 107 p.Google Scholar
  5. 5.
    Yu. N. Saraev, Weld. Int., No. 1, 475–480 (2002).Google Scholar
  6. 6.
    Yu. N. Saraev, S. V. Gladkovskii, S. V. Lepikhin, et al., High Technologies in RSF-Sibaria Projects [in Russian], S. G. Psakh'e and Yu. P. Sharkeev, eds, NTL, Tomsk, Pt 5, 134–202 (2017).Google Scholar
  7. 7.
    F. V. Kvasov, Svarochnoe proizvodstvo, No. 8, 27–31 (1999).Google Scholar
  8. 8.
    Arctic Premiere of the SMT Process, Avtomaticheskaya svarka, No. 2, 52–53 (2010).Google Scholar
  9. 9.
    Y. N. Saraev, Special Issue of World J. Engineering, 8, 989 (2011).Google Scholar
  10. 10.
    V. M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, et al., Laser Phys., 21, No. 8, 1530–1537 (2011).CrossRefGoogle Scholar
  11. 11.
    W. Diltai, L. Stein, K. Veste, and F. Reich, Avtomaticheskaya svarka, No. 10–11, 151–157 (2003).Google Scholar
  12. 12.
    Y. N. Saraev, A. G. Lunev, A. S. Kiselev, A. S. Gordynets, and M. V. Trigub, Avtomaticheskaya svarka, No. 8, 15–24 (2018). DOI: http://dx.doi.org/ https://doi.org/10.15407/as2018.08.03.
  13. 13.
    Y. N. Saraev, V. P. Bezborodov, S. V. Gladkovskii, and N. A. Golikov, Deform. i Razrush. Materi., No. 1, 36–41 (2016).Google Scholar
  14. 14.
    Y. N. Saraev, Tyazheloe mashinostroenie. No. 8, 14–19 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yu. N. Saraev
    • 1
    Email author
  • A. G. Lunev
    • 1
  • V. M. Semenchuk
    • 1
  • A. S. Nepomnyashchii
    • 1
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations