Advertisement

Thermodiffusive Mechanism of Mechanical Stress Development Near the Boundary Between Materials with Differing Rheological Properties

  • M. V. Chepak-GizbrekhtEmail author
Article
  • 3 Downloads

Principles of formation of thermodiffusive stresses in a viscoeleastic bilayer material under the temperature influence are investigated. It is shown that it is possible to use an analytical solution of the problem of mechanical equilibrium of a bilayer viscoelstic plate for an estimation of stresses and strains due to heating and diffusion taking into account the Soret effect. It is demonstrated that the viscoeleastic effect is critical in the cases where the transport processes occur within the times on the order of 0.01 s and shorter.

Keywords

stresses diffusion Soret effect analogue method bilayer specimen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Panata, S. Zhanga, and K. J. Hsiaa, Acta Mater., 51, Iss. 1, 239–249 (2003).CrossRefGoogle Scholar
  2. 2.
    J. O. Carneiro, V. Teixeira, A. Portinha, et al., Rev. Adv. Mater. Sci., 7, 32–40 (2004).Google Scholar
  3. 3.
    A. D. Korotaev, I. Yu. Litovchenko, and S. V. Ovchinnikov, Zh. Fizich. Mezomekh., 21, No. 5, 82–89 (2018).Google Scholar
  4. 4.
    A. I. Kalinichenko, S. S. Perepelkin, and V. E. Strel'nitskij, Probl. Atom. Sci. Tech., No. 1. Series: Plasma Physics (23), 203–206 (2017).Google Scholar
  5. 5.
    M. Kianicova, K. Slamecka, and J. Pokluda, in: Proc. Conf. METAL 2011, 840–846, Tanger sro, Ostrava (2011).Google Scholar
  6. 6.
    A. R. Gachkevich, A. B. Zemskov, and D. V. Tarlakovskii, Izvest. Sarat. Uni. Ser.: Mat. Mekh. Inform., 13,Iss. 4, Part 1, 52–59 (2013).Google Scholar
  7. 7.
    Yu. F. Ivanov, A. I. Potekaev, A. A. Klopotov, et al., Russ. Phys. J., 62, No. 6, 940–947 (2019).CrossRefGoogle Scholar
  8. 8.
    W. G. Mao, Y. C. Zhou, L. Yang, and X. H. Yu, Mech. Mater., 38, Iss. 12, 1118– 1127 (2006).CrossRefGoogle Scholar
  9. 9.
    A. Kagawa, Ya. Ohta, K. Nakayama, and T. Chifu, Mater. Trans., 44, No. 8, 1593–1598 (2003).CrossRefGoogle Scholar
  10. 10.
    B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, John Wiley, New York (1960).zbMATHGoogle Scholar
  11. 11.
    Коваленко A. D. Kovalenko, Thermal Elasticity [in Russian], Vyssha Shkola, Kiev (1975).Google Scholar
  12. 12.
    V. S. Eremeev, Diffusion and Stresses [in Russian], Enegoatomizdat, Moscow (1984).Google Scholar
  13. 13.
    A. G. Knyazeva, I. L. Pobol’, and I. G. Oleshuk, Izvestiya VUZov. Fiz., 56, No. 7/2, 14 – 24 (2013).Google Scholar
  14. 14.
    B. S. Bokstein, S. Z. Bokstein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  15. 15.
    M. V. Chepak-Gizbrekht and A. G. Knyazeva, J. Eng. Phys. Thermophys., 91, No. 2, 265–277 (2018).CrossRefGoogle Scholar
  16. 16.
    G. Bateman, Tables of Integral Transforms. Part I, Fourier, Laplace and Mellin Transforms, New York-Toronto-London, Mc Graw-Hill Book Company, Inc. (1954).Google Scholar
  17. 17.
    N. A. Babychev, N. А. Babushkina, A. M. Bratkovskii, et al., Physical Quantities. Reference Book [inGoogle Scholar
  18. 18.
    Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology – New Series. Diffusion in Solid Metals and Alloys [Electronic resource] (Ed. H. Mehrer), Springer, Berlin (1990). URL: http://onlinelibrary.wiley.com/doi/10.1002/crat.2170231029/abstract. (access date: 3.07.2019). – DOI:  https://doi.org/10.1002/crat.2170231029.CrossRefGoogle Scholar
  19. 19.
    A. G. Shashkov, A. F. Zolotukhina, and V. B. Vasilenko, Factor of Thermodiffusion of Gas Mixtures. Determination Methods (Ed. S. A. Zhdanka) [in Russian], Belorusskaya Nauka, Minsk (2007).Google Scholar
  20. 20.
    Modification and Alloying of the Surface with Laser, Ion, and Electron Beams: industrial press (Ed. J. M. Pout) [in Russian], Mashinostroyeniye, Moscow (1987).Google Scholar
  21. 21.
    M. Korolczuk-Hejnak and P. Migas, Arch. Metall. Mater., 57, Iss. 2, 583–591 (2012).CrossRefGoogle Scholar
  22. 22.
    G. Kaptay, Z. Metallkd., 96, Iss. 1, 24–31 (2005).Google Scholar
  23. 23.
    A. V. Asanov, I. V. Antoshkin, N. V. Malkov, et al., Vestnik YuUrGU, Ser. Metallurg., No. 9(109), 7–9 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations