Advertisement

Fractographic Study of Destruction of Composite Coatings After Bending Tests

  • T. A. KrylovaEmail author
  • Yu. A. Chumakov
  • E. V. Domarov
  • A. I. Korchagin
Article
  • 3 Downloads

The paper presents results of fractographic studies of fracture of specimens with coatings obtained by the method of nonvacuum electron-beam cladding of refractory powders on a steel substrate after conducting three-point bending tests. It has been established that brittle fracture of the coating with cracking occurs during specimen bending. The fracture is dendritic in character due to the cast dendritic structure formed in the deposited layer. The important roles of the dendrite grain sizes and of the volume fraction of eutectics have been revealed and justified. The influence of the eutectic volume fraction on the microhardness and strength of the coating has been established.

Keywords

composite coatings three-point bending strength destruction fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Erasov, G. A. Nyzhnyi, and A. V. Grinevich, Deform. Razr. Mater., No. 3, 42–47 (2015).Google Scholar
  2. 2.
    M. A, Balter, A. P. Lyubchenko, S. I. Aksenova, et al., Fraktography – Means of Diagnostics of the Destroyed Details [in Russian], Mashinostroenie, Moscow (1987).Google Scholar
  3. 3.
    Ya. B. Friedman, T. A. Gordeeva, and A. M. Zaitsev, Structure and Analysis of Fracture of Metals [in Russian], Mashgiz, Moscow (1960).Google Scholar
  4. 4.
    L. P. Fominskii and V. V. Kazanskii, Svarochn. Proizv., No. 5, 13–15 (1985).Google Scholar
  5. 5.
    I. M. Poletika, M. D. Borisov, G. V. Kraev, et al., Russ. Phys. J., 39, No. 3, 275–283 (1996).CrossRefGoogle Scholar
  6. 6.
    I. A. Bataev, A. A. Bataev, M. G. Golkovski, et al., Appl. Surf. Sci., 284, 472–481 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Bashta, Visn. NTU “KhTU,” No. 48 (954), 15–24 (2012).Google Scholar
  8. 8.
    V. I. Kopylov, East. Europ. J. Technol., 5, No. 5 (83), 49–57 (2016).Google Scholar
  9. 9.
    S. V. Panin, M. A. Belotserkovskii, M. P. Seifullina, et al., Fizich. Mesomekh., 7, No. 2, 91–104 (2004).Google Scholar
  10. 10.
    I. M. Poletika, T. A. Krylova, and M. V. Perovskaya, and M. G. Golkovskii, Met. Sci. Heat Treat., 2009. – Nos. 3–4, 115–122 (2009).Google Scholar
  11. 11.
    M. G. Golkovskii, V. V. Samoilenko, A. I. Popelyukh, et al., Obrab. Met. Tekhnol. Obor. Instrum., No. 4 (61), 43–48 (2013).Google Scholar
  12. 12.
    V. V. Frolov, Theory of Welding Processes [in Russian], Vysshaya Shkola, Moscow (1988).Google Scholar
  13. 13.
    T. A. Krylova, K. V. Ivanov, and V. E. Ovcharenko, Fiz. Khim. Obrab. Mater., No. 3, 43–49 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • T. A. Krylova
    • 1
    Email author
  • Yu. A. Chumakov
    • 1
  • E. V. Domarov
    • 2
  • A. I. Korchagin
    • 2
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.G. I. Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations