Plastic Strain Localization in Polycrystalline Titanium. Numerical Simulation

  • E. S. EmelianovaEmail author
  • V. A. Romanova
  • R. R. Balokhonov
  • M. V. Sergeev

The paper presents numerical simulation of polycrystalline titanium deformation in terms of the crystal plasticity theory. Based on the experimental data, a three-dimensional polycrystalline model is generated by a method of step-by-step packing. Constitutive relations for the deformation behavior of grains are based on the crystal plasticity theory with regard to the crystalline structure and dislocation glide in hexagonal closepacked crystal lattices. The boundary value problem of elastoplastic deformation is solved numerically using the finite element method. The proposed model is tested by elastoplastic deformation of titanium single crystals having different orientation. The proposed model is used to study the influence of the crystallographic orientation on localized plastic deformation in polycrystals.


micromechanics crystal plasticity polycrystalline structure numerical simulation localized deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Roters, et al., Acta Mater., 58, 1152–1211 (2010).CrossRefGoogle Scholar
  2. 2.
    P. S. Volegov, D. S. Gribov, and P. V. Trusov, Phys. Mesomech., 20, 174–184 (2017).CrossRefGoogle Scholar
  3. 3.
    P. V. Trusov and N. S. Kondratyev, Phys. Mesomech., 22, 230–241 (2019).CrossRefGoogle Scholar
  4. 4.
    H. Zhang, J. Liu, D. Sui, et al., Int. J. Plasticity, 100, 69–89 (2018).CrossRefGoogle Scholar
  5. 5.
    N. Vajragupta, et al., Phys. Mesomech., 20, 343–352 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Diehl, et al., Phys. Mesomech., 20, 311–323 (2017).CrossRefGoogle Scholar
  7. 7.
    F. Bridier, P. Villechaise, and J. Mendez, Acta. Mater., 53, No. 3, 555–567 (2005).CrossRefGoogle Scholar
  8. 8.
    J. W. Won, K.-T. Park, S.-G. Hong, and C. S. Lee, Mat. Sci. Eng. A-Struct., 637, 215– 221 (2015).CrossRefGoogle Scholar
  9. 9.
    Yu. P. Sharkeev, A. Yu. Eroshenko, Zh. G. Kovalevskaya, et al., Russ. Phys. J., 59, No. 3, 930–934 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Zaefferer, Mat. Sci. Eng. A-Struct., 344, No. 1–2, 20–30 (2003).CrossRefGoogle Scholar
  11. 11.
    V. A. Romanova, et al., Phys. Mesomech., 22, 296–306 (2019).CrossRefGoogle Scholar
  12. 12.
    J. Q. Ren, et al., Mat. Sci. Eng. A-Struct., 731, 530–538 (2018).CrossRefGoogle Scholar
  13. 13.
    A. V. Panin, et al., Phys. Mesomech., 21, 249–257(2018).CrossRefGoogle Scholar
  14. 14.
    V. Romanova, et al., Mat. Sci. Eng. A-Struct., 697, 248–258 (2017).CrossRefGoogle Scholar
  15. 15.
    V. Romanova and R. Balokhonov, Eng. Comput., (2019). DOI:
  16. 16.
    M. L. Miranda-Medina, Surf. Eng., 31, 519–525 (2015).CrossRefGoogle Scholar
  17. 17.
    K. Yoshida, Int. J. Mech. Sci., 83, 48–56 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • E. S. Emelianova
    • 1
    • 2
    Email author
  • V. A. Romanova
    • 1
  • R. R. Balokhonov
    • 1
  • M. V. Sergeev
    • 2
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations