Advertisement

Russian Physics Journal

, Volume 62, Issue 8, pp 1511–1517 | Cite as

The Influence of Deformation and Short-Term Hightemperature Annealing on the Microstructure and Mechanical Properties of Austenitic Steel 17Cr-14Ni-3Mo (316 Type)

  • S. A. AkkuzinEmail author
  • I. Yu. Litovchenko
Article
  • 2 Downloads

The deformation and thermal action on the microstructure and mechanical properties of a stable austenitic Cr-Ni stainless steel is investigated. It is shown that under deformation conditions packets of microtwins and bands of localized deformation with the inner fragmented structure are formed, where the fragments are of the submicro- and nanocrystaalline scales with low- and high-angle misorientation boundaries. These features of microstructure ensure high yield-point values ≈1100 MPa at a relative elongation of ≈6–7%. Short-term (to 150 s) high-temperature (850°С) annealing of the deformed structure gives rise to a local development of the processes of polygonization and recrystallization in the regions of strain localization bands. As a result of such annealing, packets of microtwins, strain localization bands, polygonized subgrains and recrystallized grains of primarily submicron dimensions are observed in the steel structure. The resulting structural states ensure the yield strength values up to 740 MPa at the relative elongations ≈20–28%. The physical processes taking place in the steel under the experimental deformation and annealing conditions are discussed.

Keywords

austenitic steel plastic deformation short-term high-temperature cyclic annealing transmission electron microscopy mechanical properties twinning strain localization bands polygonization recrystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Xiong, Y. Yue, T. He, et al., Materials, 11, 1557-1–1557-12 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    M. Roy, L. Martinelli, K. Ginestar, et al., J. Nucl. Mater., 468, 153–163 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    N. Solomon and I. Solomon, Eng. Fail. Anal., 79, 865–875 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Eskandari, A. Najafizadeh, and A. Kermanpur, Mat. Sci. Eng. A, 519, 46–50 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Odnobokova, A. Belykov, N. Enikeev, et al., Mater. Sci. Eng. A, 689, 370–383 (2017).CrossRefGoogle Scholar
  6. 6.
    S. A. Akkuzin, I.Yu. Litovchenko, and A. N. Tyumentsev, AIP Conf. Proc., 1909, 020001-1–020001-4 (2017).Google Scholar
  7. 7.
    V. V. Sagaradze and A. I. Uvarov, Strengthening of Austenitic Steels and their Properties [in Russian], RIO RAN, Ekaterinburg (2013).Google Scholar
  8. 8.
    M. Moallemi, A. Kermanpur, A. Najafizadeh, et al., Mater. Lett., 89, 22–24 (2012).CrossRefGoogle Scholar
  9. 9.
    S. A. Akkuzin, I. Yu. Litovchenko, A. N. Tyumentsev, et al., Russ. Phys. J., 62, No. 4, 698–704 (2019).CrossRefGoogle Scholar
  10. 10.
    A. N. Tyumentsev, I. Yu. Litovchenko, Yu. P. Pinzhin, et al., The Physics Metals and Metallography, 95, No. 2, 186–195 (2003).Google Scholar
  11. 11.
    I. Yu. Litovchenko, A. N. Tyumentsev, N. V. Shevchenko, et al., The Physics of Metals and Metallography, 112, No. 4, 412–423 (2011). DOI:  https://doi.org/10.1134/S0031918X11040260.ADSCrossRefGoogle Scholar
  12. 12.
    T.-H. Lee, E. Shin, C.-S. Oh, et al., Acta Mater., 58, 3173–3186 (2010).CrossRefGoogle Scholar
  13. 13.
    S. J. Wang, T. Jozaghi, and I. Karaman, Mater. Sci. Eng. A, 694, 121–131 (2017).CrossRefGoogle Scholar
  14. 14.
    C. Donadille, R. Valle, P. Dervin, et al., Acta Metallurg, 37, No. 6, 1547–1571 (1989).Google Scholar
  15. 15.
    I. Yu. Litovchenko, S. A. Akkuzin, and A. N. Tyumentsev, AIP Conf. Proc. 2058, 030034-1–030034-4 (2018).Google Scholar
  16. 16.
    S. Rajasekhara, L. P. Karjalainen, A. Kyröläinen, et al., Mater. Sci. Eng. A, 527, 1986–1996 (2010).CrossRefGoogle Scholar
  17. 17.
    V. E. Panin, N. S. Surikova, S. V. Panin, et al., Phys Mesomech 22, 22, No. 5, 382–391 (2019).  https://doi.org/10.1134/S1029959919050059FizicheskayaMezomekhanika, 22, No. 3, 5–14 (2019).
  18. 18.
    S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys, 3-rd edition [in Russian], MISIS, Moscow (2005).Google Scholar
  19. 19.
    E. G. Astafurova, E. V. Melnikov, S. V. Astafurov, et al., Physical Mesomechanics, 22, No. 4, 313–326 (2019)  https://doi.org/10.1134/S1029959919040076 CrossRefGoogle Scholar
  20. 20.
    B. R. Kumar, S. K. Das, S. Sharma, et al., Mater. Sci. Eng. A, 527, 875–882 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations