Advertisement

Mechanical Response of ZrB2–SiC–ZrO2 Composite Laminate

  • A. G. BurlachenkoEmail author
  • Yu. A. Mirovoi
  • E. S. Dedova
  • S. P. Buyakova
Article
  • 1 Downloads

The paper deals with heat-reflecting ZrB2–20% SiC ceramic composite and heat-reflecting ZrB2–20% SiC composite laminate with ZrO2 addition, the amount of which varies from 0 to 100%. Their properties and behavior are studied under the conditions of three-point bending and diametral compressive tests. The increased amount of ZrO2 in the composite layers notably reduces the elastic modulus and increases the thermal-expansion coefficient. It is found that in the composite laminate layer adjacent to that with lower thermal-expansion coefficient and in the layer adjacent to that with higher thermal-expansion coefficient, compressive and tensile residual stresses appear, respectively. The hardness in the region of compressive stress is higher than in the region of tensile stress. The texture of the broken specimen surface indicates that the main crack bifurcation occurs at the interface of the layers with 30 and 70% ZrO2 content and the greater difference in the thermal-expansion coefficient, regardless of the loading conditions of three-point bending. The fracture energy of ZrB2–SiC–ZrO2 composite laminate significantly exceeds that of ZrB2–20% SiC ceramic composite.

Keywords

heat-reflecting composite laminate fracture compressive and tensile residual stresses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Parente, Y. Ortega, et al., Acta Mater., 58, 3014–3021 (2010).CrossRefGoogle Scholar
  2. 2.
    M. P. Rao, A. J. Sanchez-Herencia, G. E. Beltz, et al., Science, 286, 102–105 (1999).CrossRefGoogle Scholar
  3. 3.
    J. Gurauskis, A. J. Sanchez-Herencia, and C. J. Baudin, J. Eur. Ceram. Soc., 27, 1389–1394 (2007).CrossRefGoogle Scholar
  4. 4.
    G. Y. Lin and A. V. Virkar, J. Am. Ceram. Soc., 84, 1321–1326 (2001).CrossRefGoogle Scholar
  5. 5.
    D. Kovar, M. D. Thouless, and J. W. Halloran, J. Am. Ceram. Soc., 81, No. 4, 1004–1012 (1998).CrossRefGoogle Scholar
  6. 6.
    R. Bermejo, C. Baudın, R. Moreno, et al., Compos. Sci. Technol., 67, No. 9, 1930–1938 (2007).CrossRefGoogle Scholar
  7. 7.
    D. D. Hass, A. J. Slifka, and H. N. G. Wadley, Acta Mater., 49, 973–983 (2001).CrossRefGoogle Scholar
  8. 8.
    A. G. Evans, J. Am. Ceram. Soc., 73, No. 2, 187–206 (1990).CrossRefGoogle Scholar
  9. 9.
    O. A. Kudryavtsev and S. B. Sapozhnikov, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika, 6, No. 3, 60–65 (2014).Google Scholar
  10. 10.
    M. G. Pontin, M. P. Rao, A. J. Sanchez-Herencia, and F. F. Lange, J. Am. Ceram. Soc., 85, 3041–3048 (2002).CrossRefGoogle Scholar
  11. 11.
    M. H. Zhao, X. Chen, J. Yan, and A. M. Karlsson, Acta Mater., 54, 2823–2832 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Suresh and A. E. Giannakopoulos, Acta Mater., 46, 5755–5767 (1998).CrossRefGoogle Scholar
  13. 13.
    Y. H. Lee and D. Kwon, Scripta Mater., 49, 459–465 (2003).CrossRefGoogle Scholar
  14. 14.
    T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Sci., 11, 752–759 (1996).Google Scholar
  15. 15.
    A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res., 11, 760–768 (1996).Google Scholar
  16. 16.
    G. D. Quinn and R. C. Bradt, J. Am. Ceram. Soc., 90, 673–680 (2007).CrossRefGoogle Scholar
  17. 17.
    X. Zhao and P. Xiao, Surf. Coat. Tech., 201, 1124–1131 (2006).CrossRefGoogle Scholar
  18. 18.
    G. de Portu, L. Micele, Y. Sekiguchi, and G. Pezzotti, Acta Mater., 53, 1511–1520 (2005).CrossRefGoogle Scholar
  19. 19.
    A. V. Diniz, N. G. Ferreira, E. J. Corat, and V. J. Trava-Airoldi, Diam. Relat. Mater., 13. 526–532 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    M. Tanaka, R. Kitazawa, T. Tomimatsu, et al., Surf. Coat Tech., 204, 657–660 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. G. Burlachenko
    • 1
    Email author
  • Yu. A. Mirovoi
    • 1
    • 2
  • E. S. Dedova
    • 1
    • 2
  • S. P. Buyakova
    • 1
    • 2
    • 3
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations