Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1298–1305 | Cite as

The Synthesis of Ni–Al Surface Alloy by Low-Energy, High-Current Electron Beam Irradiation of Composite Coating

  • A. B. MarkovEmail author
  • E. V. Yakovlev
  • D. A. Shepel’
  • A. V. Solov’ev
  • V. I. Petrov
Article
  • 4 Downloads
Part of the following topical collections:
  1. Topical Collection on Gun Violence

The paper presents research results of the synthesis of Ni–Al surface alloy performed in a single vacuum cycle via magnetron sputtering of Ni (0.5 μm)–Al (1.5 μm)–Ni (0.5 μm) composite coating onto a steel substrate and its successive single pulse irradiation with low-energy, high-current electron beam (LEHCEB) of a microsecond duration. The numerical solution of the heat equation is used to determine the optimum LEHCEB modes which provide melting of all the films deposited. It is shown that the single pulse irradiation of thin films leads to the formation of the surface alloy consisting mainly of high-melting-point NiAl intermetallic phase. The structure of the surface alloy is a 2 μm thick homogeneous coating with 2×4 μm globules beneath separated by a thin layer of the substrate material. It is found that the wear resistance of the obtained Ni–Al surface layer is 2.7 times higher than that of the untreated steel substrate.

Keywords

low-energy high-current electron beam surface alloy composite coating NiAl intermetallic phase wear resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohammad Reza Bafandeh, Ali Omidi, and Abdullah Irankhah, Surf. Coat. Tech., 315, 268–273 (2017).CrossRefGoogle Scholar
  2. 2.
    C. Sierra and A. J. Vazquez, Sol. Energ. Mat. Sol. C., 86, 33–42 (2005).CrossRefGoogle Scholar
  3. 3.
    Grzegorz Dercz, L. Pająk, and B. Formanek, J. Mater. Process. Tech., 175, No. 1, 334–337 (2006).CrossRefGoogle Scholar
  4. 4.
    Jing Wen, Hongzhi Cui, Na Wei, et al., J. Alloy. Compd., 695, 2424–2433 (2017).CrossRefGoogle Scholar
  5. 5.
    F. Su, C. Liu, and P. Huang, Wear, 300, 114–125 (2013).CrossRefGoogle Scholar
  6. 6.
    S. C. Tjong and H. Chen, Mater. Sci. Eng. R: Rep., 45, 1–88 (2004).CrossRefGoogle Scholar
  7. 7.
    K. L. Choy, Progr. Mater. Sci., 48, No. 2, 57–170 (2003).CrossRefGoogle Scholar
  8. 8.
    J. He and J. M. Schoenung, Mat. Sci. Eng. A-Struct., 336, 274–319 (2002).CrossRefGoogle Scholar
  9. 9.
    H. T. Wang, C. J. Li, G. J. Yang, and C. X. Li, Appl. Surf. Sci., 255, No. 5, 2538–2544 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    V. G. Shchukin and V. V. Marusin, Novye Mater. Tekhn. Mashinostr., No. 18, 128–133 (2013).Google Scholar
  11. 11.
    Yu. Youjun, Jiansong Zhou, Jianmin Chen, et al., Wear, 274–275, 298–305 (2012).Google Scholar
  12. 12.
    S. V. Komarov, S. Romankov, N. Hayashi, and E. Kasai, Surf. Coat. Tech., 204, 2215–2222 (2010).CrossRefGoogle Scholar
  13. 13.
    G. Gupta, K. Mondal, and R. Balasubramaniam, J. Alloy. Compd., 482, 118 (2009).CrossRefGoogle Scholar
  14. 14.
    D. Wei, X. Wang, R. Wang, and H. Cui, Vacuum, 149, 118–123 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    T. J. Renk, R. G. Buchheit, N. R. Sorensen, and D. Cowell, Phys. Plasmas, 5, 2144 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    E. Richter, J. Piekoszewski, E. Wieser, et al., Surf. Coat. Tech., 32, 4158–159 (2002).Google Scholar
  17. 17.
    A. V. Batrakov, A. B. Markov, G. E. Ozur, et al., Eur. Phys. J. Appl. Phys., 43, 283–288 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    A. Markov, E. Yakovlev, D. Shepel’, and M. Bestetti, Results Phys., 12, 1915–1924 (2019).ADSCrossRefGoogle Scholar
  19. 19.
    A. B. Markov, A. V. Mikov, G. E. Ozur, and A. G. Padei, Instrum. Exp. Tech., 54, No. 6, 862–866 (2011).CrossRefGoogle Scholar
  20. 20.
    V. Rotshtein, Yu. Ivanov, and A. Markov, Materials Surface Processing by Directed Energy Techniques, Y. Pauleau, Ed., Elsevier, Oxford (2006), pt 6, pp. 205–240.Google Scholar
  21. 21.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Values: Manual [in Russian], I. S. Grigor’ev, E. Z. Meilikhov, Eds. Energoatomizdat, Moscow (1991), 1232 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. B. Markov
    • 1
    Email author
  • E. V. Yakovlev
    • 1
  • D. A. Shepel’
    • 1
  • A. V. Solov’ev
    • 1
  • V. I. Petrov
    • 1
  1. 1.Tomsk Scientific Center of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations