Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1235–1242 | Cite as

Peculiarities of an Electrical Explosion of Flat Conductors in the Current Skinning Mode

  • S. A. ChaikovskiiEmail author
  • V. I. Oreshkin
  • N. A. Labetskaya
  • I. M. Datsko
  • D. V. Rybka
  • V. A. Vankevich
  • N. A. Ratakhin
Article
  • 3 Downloads

The propagation of a nonlinear magnetic-field diffusion wave generated under the condition of an electrical explosion of flat conductors is investigated in the current skinning mode. Using a MIG terrawatt generator, a number of experiments are performed on electrical explosion of a copper foil, 100 μm in thickness and 5 mm in width, at the current amplitude up to 2.5 MA and its rise rate 100 ns. It is shown that under these conditions a plasma channel is formed by approximately 75-th ns from the current onset. The estimations, made considering the magnetic field enhancement on the foil edges, demonstrate that about 70–80 ns are required for the nonlinear magnetic-field diffusion wave to propagate from the foil edge to its center. A good agreement of the experimental data and the estimates suggested a conclusion that the plasma channel formation is due to the convergence of the nonlinear diffusion wave towards the longitudinal foil axis.

Keywords

electrical explosion of conductors (EEC) superstrong magnetic fields nonlinear magnetic-field diffusion pulsed current generator high-density low-temperature plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Slutz, C. Olson, and P. Peterson, Phys. Plasmas, 10, 429–437 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    E. Azizov, S. Alikhanov, E. Velikhov, et al., Plasma Devices and Operations, 12, 123–132 (2004).CrossRefGoogle Scholar
  3. 3.
    W. A. Stygar, M. Cuneo, D. Headley, et al., Phys. Rev. Special Topics-Accelerators and Beams, 10, 030401 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    W. Stygar, T. Awe, J. Bailey, et al., Phys. Rev. Special Topics-Accelerators and Beams, 18, 110401 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Kim, M. Mazarakis, V. Sinebryukhov, et al., Phys. Rev. Special Topics-Accelerators and Beams, 12, 050402 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    E. V. Grabovskii, V. V. Aleksandrov, A. N. Gritsuk, et al., in: Abstracts IEEE Pulsed Power and Plasma Science Conf., 224, San Francisco, CA (2013).Google Scholar
  7. 7.
    K. Struve, J. Corley, D. Johnson, et al., in: Digest of Technical Papers of the 12th IEEE Int. Pulsed Power Conf., 493, Monterey, CA (1999).Google Scholar
  8. 8.
    V. P. Smirnov, S. V. Zakharov, E. V. Grabovskii, et al., J. Exp. Theor. Phys. Lett., 81, 442–447 (2006).CrossRefGoogle Scholar
  9. 9.
    V. Mokhov, O. Burenkov, A. Buyko, et al., Fusion Eng. Design, 70, 35–43 (2004).CrossRefGoogle Scholar
  10. 10.
    I. R. Lindemuth, Phys. Plasmas, 22, 122712 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    S. Slutz, M. Herrmann, R. Vesey, et al., Phys. Plasmas, 17, 056303 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. R. Gomez, S. A. Slutz, A. B. Sefkow, et al., Phys. Rev. Lett., 113, 155003 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    K. C. Yates, B. S. Bauer, S. Fuelling, et al., Phys. Plasmas, 26, 042708 (2019).ADSCrossRefGoogle Scholar
  14. 14.
    C. Fowler, W. Garn, and R. Caird, J. Appl. Phys., 31, 588–594 (1960).ADSCrossRefGoogle Scholar
  15. 15.
    A. D. Sakharov, Physics-Uspekhi, 88, 725–734 (1966).Google Scholar
  16. 16.
    G. Knoepfel, Pulsed High Magnetic Fields, North-Holland Publishing Company, Amsterdam (1970).Google Scholar
  17. 17.
    Y. N. Bocharov, S. I. Krivosheev, and G. A. Shneerson, Pis’ ma ZhTF, 8, 212–216 (1982).Google Scholar
  18. 18.
    S. I. Krivosheev, V. V. Titkov, and G. A. Shneerson, Tech. Phys., 42, Iss. 4, 352–366 (1997).CrossRefGoogle Scholar
  19. 19.
    R. Kinslow, High-Velocity Impact Phenomena, Academic Press, N. Y. (1970).Google Scholar
  20. 20.
    S. Rashleigh and R. Marshall, J. Appl. Phys., 49, 2540–2542 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    V. E. Fortov, Physics-Uspekhi, 50, 333–353 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    T. Nash, C. Deeney, G. Chandler, et al., Phys. Plasmas, 11, L65–L68 (2004).CrossRefGoogle Scholar
  23. 23.
    M. D. Knudson, R. Lemke, D. Hayes, et al., J. Appl. Phys., 94, 4420–4431 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    R. Lemke, M. Knudson, C. Hall, et al., Phys. Plasmas, 10, 1092–1099 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    S. I. Tkachenko, E. V. Grabovski, A. N. Gribov, et al., Bull. Russ. Acad. Sci.: Physics, 82, 390–393 (2018).Google Scholar
  26. 26.
    E. V. Grabovskii, V. V. Alexandrov, A. V. Branitskii, et al., IOP Conf. Series: J. Phys. Conf. Series, 946, 012041 (2018).Google Scholar
  27. 27.
    V. I. Oreshkin and S. A. Chaikovsky, Phys. Plasmas, 19, 022706 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    V. I. Oreshkin, S. A. Chaikovsky, I. M. Datsko, et al., Phys. Plasmas, 23, 122107 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    R. Z. Luydaev. Megagaus and Megaampere Pulsed Technology and Applications, Volume 1 [in Russian], VNIIEF, Sarov (1997).Google Scholar
  30. 30.
    G. A. Shneerson, Sov. Tech. Phys., 18, 419 (1973).Google Scholar
  31. 31.
    S. A. Chaikovsky, V. I. Oreshkin, I. M. Datsko, et al., Phys. Plasmas, 21, 042706 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Luchinskii, N. A. Ratakhin, V. F. Feduschak, and A. N. Shepelev, Russ. Phys. J., 40, No. 12, 1177–1184 (1997).CrossRefGoogle Scholar
  33. 33.
    V. K. Petin, S. V. Shljakhtun, V. I. Oreshkin and N. A. Ratakhin, Tech. Phys., 53, 776–782 (2008).CrossRefGoogle Scholar
  34. 34.
    S. A. Chaikovsky, V. I. Oreshkin, G. A. Mesyats, et al., Phys. Plasmas, 16, 042701 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    I. E. Tamm, Fundamentals of the theory of electricity, Mir Publishers, Moscow (1979).Google Scholar
  36. 36.
    G. A. Shneerson, Fields and Transient Processes in High-Current Apparatus [in Russian], Energoizdat, Leningrad (1981).Google Scholar
  37. 37.
    A. A.Valuev, I. I. Dikhter, and V. A. Zeigarnik, Zhur. Tekh. Fiz., 48, 2088–2096 (1978).Google Scholar
  38. 38.
    V. I. Oreshkin, Tech. Phys. Lett., 35, 36–39 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    K. B. Abramova, N. A. Zlatin, B. P. Peregud, et al., Zhur. Exp. Tekh. Fiz., 69, 2007–2022 (1975).ADSGoogle Scholar
  40. 40.
    A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, et al., Phys. Plasmas, 15, 102706 (2008).ADSCrossRefGoogle Scholar
  41. 41.
    R. Baksht, S. Tkachenko, V. Romanova, et al., Tech. Phys., 58, 1129–1137 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. A. Chaikovskii
    • 1
    • 2
    Email author
  • V. I. Oreshkin
    • 1
    • 3
  • N. A. Labetskaya
    • 1
  • I. M. Datsko
    • 1
  • D. V. Rybka
    • 1
  • V. A. Vankevich
    • 1
  • N. A. Ratakhin
    • 1
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Institute of Electrophysics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations