Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1207–1213 | Cite as

Selection of Symmetric and Asymmetric Modes in the Oversize Slow-Wave Structure of a Multiwave Cherenkov Generator

  • M. P. DeichulyEmail author
  • V. I. Koshelev
  • V. A. Chazov
Article
  • 2 Downloads

The resonances of the slow-wave structure of a multiwave Cherenkov generator have been determined theoretically for a frequency range close to the π-type frequency of the lower symmetric mode. The ratio of the diameter of the slow-wave structure to the wavelength of the microwave radiation was equal to four. The resonance frequencies and Q factors of symmetric and asymmetric modes have been found in relation to the length of the drift tube. It has been shown that these relations strongly affect the spectral composition of the resonances. At some ratios of the slow-wave structure diameter to the radiation wavelength, high-Q resonances of higher oscillation types (locked modes) occur. Examples of the slow-wave structure geometries are given for which resonances of some modes have an advantage of higher Q factor.

Keywords

slow-wave structure resonance mode selection scattering matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Bugaev, V. I. Kanavets, A. I. Klimov, et al., Sov. J. Commun. Tech. Electron., 32, No. 11, pp. 79–87 (1987).Google Scholar
  2. 2.
    S. P. Bugaev, V. I. Kanavets, V. I. Koshelev, et al., Sov. J. Commun. Tech. Electron., 34, No. 4, pp. 119–126 (1989).Google Scholar
  3. 3.
    M. Deichuli, V. Koshelev, V. M. Pikunov, and I. A. Chernyavskii, J. Commun. Technol. Electron., 41., pp. 208–215 (1996).Google Scholar
  4. 4.
    V. I. Koshelev and M. P. Deichuly, in: Amer. Inst. of Physics (AIP) Conf. Proc. ”High Energy Density Microwaves” (ed. R. M. Phillips), N. Y., 474, pp. 347–359 (1999).Google Scholar
  5. 5.
    V. I. Koshelev and V. A. Popov, J. Commun. Technol. Electron., 45, pp. 999–1002 (2000).Google Scholar
  6. 6.
    R. Xiao, J. Li, X. Bai, et al., Appl. Phys. Lett., 104, p. 093505 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Rostov, A. V. Gunin, R. V. Tsygankov, et al., IEEE Trans. Plasma Sci., 40, pp. 33–42 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    V. Chazov, M. Deichuly, and V. Koshelev, in: Proc. 20th Int. Symp. on High-Current Electronics, Tomsk, Russia, Sep. 16–22, 2018, pp. 74–79.Google Scholar
  9. 9.
    M. P. Deichuly, V. I. Koshelev, and V. A. Chazov, Russ. Phys. J., 60, No. 8, 1379–1385 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. P. Deichuly
    • 1
    Email author
  • V. I. Koshelev
    • 1
  • V. A. Chazov
    • 1
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations