Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1171–1180 | Cite as

Streamer Breakdown with Runaway Electrons Forming Diffuse Discharges in an Inhomogeneous Electric Field

  • D. B. BeloplotovEmail author
  • M. I. Lomaev
  • D. A. Sorokin
  • V. F. Tarasenko
Article
  • 5 Downloads

The results of experimental investigations of formation of diffuse nanosecond discharges in a nonuniform electric field in air and other gases at the pressures within 12.5–400 kPa are presented. The experiments were performed using a four-channel ICCD-camera, an ultra-fast streak-camera, and wideband oscilloscopes. It is found out that spherical streamers are formed in a sharply nonuniform electrical fields under high voltages in a pre-breakdown stage of the discharge, irrespective of the gas used (air, nitrogen, hydrogen, methane, neon, or helium). The data are obtained on the instantaneous streamer velocity in air at different voltages and on the displacement current caused by the electric field re-distribution in the gap during the streamer formation. Beams of runaway electrons are recorded. The mechanism of formation of anode- and cathode-directed streamers at high voltages is discussed.

Keywords

breakdown in nonuniform electric field ionization wave streamer displacement current runaway electrons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Pancheshnyi, M. Nudnova, and A. Starikovskii, Phys. Rev. E, 71, No. 1, 016407 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    G. A. Mesyats, UFN, 176, Iss. 10, 1069–1091 (2006).CrossRefGoogle Scholar
  3. 3.
    D. Z. Pai, G. D. Stancu, D. A. Lacoste, and C. O. Laux, Plasma Sources Sci. Technol., 18, No. 4, 045030 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    P. Tardiveau, N. Moreau, S. Bentaleb, et al., J. Phys. D: Appl. Phys., 42, 175202 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    S. Yatom, V. Vekselman, J. Z. Gleizer, and Ya. E. Krasik, J. Appl. Phys., 109, 073312 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. Y. Starikovskii, IEEE Trans. Plasma Sci., 39, 2602–2603 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    T. Shao, V. F. Tarasenko, C. Zhang, et al., Rev. Sci. Instrum., 84, 053506 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    M. I. Lomaev, D. V. Beloplotov, V. F. Tarasenko, and D. A. Sorokin, IEEE Trans. Dielectr. Electr. Insulat., 22, No. 4, 1833–1840 (2015).CrossRefGoogle Scholar
  9. 9.
    S. N. Ivanov and K. A. Sharypov, Tech. Phys. Lett., 42, No. 3, 274–277 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    P. Tardiveau, L. Magne, E. Marode, et al., Plasma Sources Sci. Technol., 25, No. 5, 054005 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    S. Yatom, A. Shlapakovski, L. Beilin, et al., Plasma Sources Sci. Technol., 25, 064001 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    J. Teunissen and U. Ebert, Plasma Sources Sci. Technol., 25, 044005 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    D. V. Beloplotov, V. F. Tarasenko, D. A. Sorokin, and M. I. Lomaev, JETP Lett., 106, No. 10, 653–658 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    N. Y. Babaeva, C. Zhang, J. Qiu, et al., Plasma Sources Sci. Technol., 26, 085008 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    D. V. Beloplotov, M. I. Lomaev, V. F. Tarasenko, and D. A. Sorokin, JRTP Lett., 107, Iss. 10, 606–611 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    Low Temperature Plasma. Fundamentals, Technologies, and Techniques (Eds. R. Hipler, H. Kersten, M. Schmidt, and K. H. Schoenbach), 2nd ed., WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim (2008).Google Scholar
  17. 17.
    Low Temperature Plasma Technology (Eds. P. K. Chu and X. Lu) CRC Press, Boca Raton (2014).Google Scholar
  18. 18.
    L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment and Natural Phenomena, Futurepast, Arlington, VA (2003).Google Scholar
  19. 19.
    Runaway Electrons Preionized Diffuse Discharges (Ed. V. F. Tarasenko), Nova Science Publishers, Inc., N. Y. (2014).Google Scholar
  20. 20.
    G. V. Naidis, V. F. Tarasenko, N. Y. Babaeva, and M. I. Lomaev, Plasma Sources Sci. Technol., 27, 013001 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    V. F. Tarasenko, G. V. Naidis, D. V. Beloplotov, et al., Plasma physics Reports, 44, No. 8, 652–660 (2018).CrossRefGoogle Scholar
  22. 22.
    Yu. P. Raiser, Gas Discharge Physics [in Russian], Intellekt, Dolgoprudnyi (2009).Google Scholar
  23. 23.
    D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Russ. Phys. J., 60, No. 8, 1308–1313 (2017).CrossRefGoogle Scholar
  24. 24.
    V. F. Tarasenko, V. M. Orlovskii, and S. A. Shunailov, Russ. Phys. J., 46, No. 3, 325–327 (2003).CrossRefGoogle Scholar
  25. 25.
    V. M. Efanov, M. V. Efanov, A. V. Komashko, et al., Ultra Wideband, Short Pulse Electromagnetics, Part 5, (Eds. F. Sabath, D. V. Giri, F. Rachidi-Haeri, and A. Kaelin), Springer Verlag, N. Y. (2010).Google Scholar
  26. 26.
    V. F. Tarasenko and D. V. Rybka, High Voltage, 1, No. 1, 43–51 (2016).CrossRefGoogle Scholar
  27. 27.
    N. Y. Babaeva and G. V. Naidis, Phys. Plasmas, 23, 083527 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    N. Y. Babaeva, D. V. Tereshonok, and G. V. Naidis, Plasma Sources Sci. Technol., 25, 044008 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    E. E. Kunhardt and W. W. Byszewski, Phys. Rev. A, 21, 2069 (1980).ADSCrossRefGoogle Scholar
  30. 30.
    W. W. Byszewski and G. Reinhold, Phys. Rev. A, 26, 2826 (1982).ADSCrossRefGoogle Scholar
  31. 31.
    C. Köhn, O. Chanrion, and T. Neubert, Plasma Sources Scie. Technol., 26, 015006 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    C. Köhn, O. Chanrion, and T. Neubert, Geophys. Res. Lett., 44, 2604 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    V. F. Tarasenko, E. K. Baksht, A. G. Burachenko, et al., Plasma Devices and Operations, 16, No. 4, 267–298 (2008).CrossRefGoogle Scholar
  34. 34.
    A. V. Kozyrev, V. F. Tarasenko, E. Kh. Baksht, and Yu. V. Shut’ko, JETP Lett., 37, Iss. 22, 26–33 (2011).Google Scholar
  35. 35.
    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, Plasma Phys. 43, No. 7, 792–795 (2017).CrossRefGoogle Scholar
  36. 36.
    C. V. Nguyen, A. P.J. Van Deursen, E. J.M. Van Heesch, et al., J. Phys. D: Appl. Phys., 43, 025202 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. B. Beloplotov
    • 1
    Email author
  • M. I. Lomaev
    • 1
  • D. A. Sorokin
    • 1
  • V. F. Tarasenko
    • 1
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations