Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1154–1160 | Cite as

Study of the Stability of Triggering of a Controlled Multigap Spark Switch for Capacitive Energy Storage with Charging Voltage up to 100 kV and Energy Release Time on the Order of 100 ns

  • A. A. ZherlitsynEmail author
  • E. V. Kumpyak
  • G. V. Smorudov
Article
  • 2 Downloads

Results are presented of a study of the stability of triggering of a six-channel seven-gap spark switch intended for switching a capacitive energy storage with a charging voltage of up to 100 kV and energy release time on the order of 100 ns. The working medium of the spark switch is air at atmospheric pressure. In the controlled triggering regime, we measured the breakdown delay time of all of the discharge gaps relative to the arrival of the voltage trigger pulse and calculated the mean square deviation of the delay time (jitter) under variation of the charging voltage and growth rate of the voltage trigger pulse. Jitter less than 1 ns was obtained for a charging voltage of 90–100 kV and a growth rate of the voltage trigger pulse ~650 kV/μs. When the growth rate of the trigger pulse is decreased, the jitter of the spark switch grows significantly. Thus, for a charging voltage of 100 kV and a trigger voltage pulse with growth rate ~200 kV/μs the jitter exceeds 20 ns, and for a voltage trigger pulse with growth rate ~100 kV/μs the jitter exceeds 30 ns. To reduce the jitter when using trigger pulses with low growth rate, blade electrodes were inserted into the spark switch, ensuring ignition of a corona discharge in the gaps during charging of the capacitive storage. It has been shown that for a growth rate of the trigger pulse of 100–200 kV/μs the corona discharge reduces the jitter by 2–3 times.

Keywords

high-pressure gas spark switch corona discharge jitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Luchinskii, N. A. Ratakhin, V. F. Fedushchak, and A. N. Shepelev, Russ. Phys. J., 40, No. 12, 1178–1184 (1997).CrossRefGoogle Scholar
  2. 2.
    I. D. Smith, Phys. Rev. STAB, No. 7, 064801 (2004).Google Scholar
  3. 3.
    B. M. Koval’chuk, V. A. Visir, A. A. Kim, et al., Russ. Phys. J., 40, No. 12, 1142–1153 (1997).CrossRefGoogle Scholar
  4. 4.
    A. A. Kim, B. M. Koval’chuk, E. V. Kumnyak, and N. V. Tsoy, Russ. Phys. J., 42, No. 12, 985–989 (1999).CrossRefGoogle Scholar
  5. 5.
    I. D. Smith, V. L. Bailey, J. Fockler Jr., et al., IEEE Trans. Plasma Sci., 28, No. 5, 1653–1659 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    J. J. Leckbee, J. E. Maenchen, D. L. Johnson, et al., IEEE Trans. Plasma Sci., 34, No. 5, 1888–1899 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    V. M. Alexeenko, M. G. Mazarakis, A. A. Kim, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 57, No. 12/2, 5–8 (2014).Google Scholar
  8. 8.
    V. M. Alexeenko, M. G. Mazarakis, A. A. Kim, et al., Phys. Rev. STAB, No. 19, 090401 (2016).Google Scholar
  9. 9.
    J. R. Woodworth, J. A. Alexander, F. R. Gruner, et al., Phys. Rev. STAB, No. 12(6), 060401 (2009).Google Scholar
  10. 10.
    J. R. Woodworth, W. A. Stygar, L. F. Bennett, et al., Phys. Rev. STAB, No. 13(8), 080401 (2010).Google Scholar
  11. 11.
    J. M. Meek and J. D. Craig, Electrical Breakdown in Gases, Clarendon Press, Oxford (1953).Google Scholar
  12. 12.
    B. M. Koval’chuk, V. V. Kremnev, and Yu. F. Potalitsyn, High-Current Nanosecond Switches [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  13. 13.
    GOST R ISO 5479-2002. Statistical Methods. Verification of Deviation of a Probability Distribution from a Normal Distribution [in Russian], Izdatel’stvo Standartov, Moscow (2002).Google Scholar
  14. 14.
    S. S. Shapiro and R. S. Francia, J. Am. Stat. Associat., 67, No. 337, 215–216 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Zherlitsyn
    • 1
    Email author
  • E. V. Kumpyak
    • 1
  • G. V. Smorudov
    • 1
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations