Formation of Gradient Metalloceramic Materials Using Electron-Beam Irradiation in the Forevacuum
Article
First Online:
- 3 Downloads
Results of using an electron beam formed by a forevacuum plasma electron source to sinter metalloceramic materials in powder form are reported. As the materials to be sintered, we used mixtures of titanium powder and an aluminum-oxide or zirconium-oxide based ceramic powder. Sintering was performed using a narrowly focused beam directed onto the surface of the metalloceramic powder. It has been shown that using a mixture of finely dispersed zirconium dioxide or aluminum oxide powder with titanium allows one, by using the electron-beam method in the forevacuum pressure region, to obtain a metalloceramic sample with a titanium concentration gradient over the volume of the sample.
Keywords
electron beam sintering metalloceramic gradient ceramic materialsPreview
Unable to display preview. Download preview PDF.
References
- 1.E. N. Kablov, Metally Evrazii, No. 3, 10–15 (2012).Google Scholar
- 2.N. Cherradi, A. Kawasaki, and M. Gasik, Compos. Part B-Eng., 4, No. 8, 883–894 (1994).CrossRefGoogle Scholar
- 3.A. S. Chainkova, L. A. Orlova, N. V. Popovich, et al., Aviats. Mater. Tekhnol., No. S6, 52–58 (2014).Google Scholar
- 4.E. N. Kablov, Aviats. Mater. Tekhnol., No. 1 (34), 3–33 (2015).Google Scholar
- 5.P. Boch and J. C. Nièpce, Ceramic Materials: Processes, Properties, and Applications, John Wiley & Sons, New York (2010).Google Scholar
- 6.A. Mortensen, Int. Mater. Rev., 6, 239–265 (1995).CrossRefGoogle Scholar
- 7.M. Naebe and K. Shirvanimoghaddam, Appl. Mater. Today, 5, 223–245 (2016).CrossRefGoogle Scholar
- 8.P. Shanmugavel, G. B. Bhaskar, M. Chandrasekaran, et al., Eur. J. Sci. Res., 68, No. 3, 412–439 (2012).Google Scholar
- 9.B. Kieback, A. Neubrand, and H. Riedel, Mater. Sci. Eng. A, 362, 81–105 (2003).CrossRefGoogle Scholar
- 10.T. Liu, Q. Wang, A. Gao, et al., Scripta Mater., 57, No. 11, 992–995 (2007).CrossRefGoogle Scholar
- 11.L. Marin, Int. J. Sol. Struct., 42, No. 15, 4338–4351 (2005).CrossRefGoogle Scholar
- 12.S. J. Marković, J. Eur. Ceram. Soc., 29, 2309–2316 (2009).CrossRefGoogle Scholar
- 13.H. Yuan et al., Int. J. Refract. Met. H., 34, 13–417 (2012).CrossRefGoogle Scholar
- 14.A. Teber et al., Int. J. Refract. Met. H., 30, 64–70 (2012).CrossRefGoogle Scholar
- 15.Z. Qiao et al., Int. J. Refract. Met. H., 38, 7–14 (2013).CrossRefGoogle Scholar
- 16.J. Wang, J. Am. Ceram. Soc., 89, 1977–1984 (2006).CrossRefGoogle Scholar
- 17.W. Yan, W. Ge, J. Smith, et al., Acta Mater., 115, 403–412 (2016).CrossRefGoogle Scholar
- 18.V. Burdovitsin, A. Klimov, and E. Oks, Tech. Phys. Lett., 35, 511–513 (2009).ADSCrossRefGoogle Scholar
- 19.V. Burdovitsin, A. Klimov, A. Medovnik, and E. Oks, Plasma Sources Sci. Technol., 19, No. 5, 055003 (2010).ADSCrossRefGoogle Scholar
- 20.A. Klimov, I. Bakeev, E. Oks, and A. Zenin, Laser Part. Beams, 37, No. 2, 203–208 (2019).ADSCrossRefGoogle Scholar
- 21.É. S. Dvilis, V. A. Burdovitsin, A. O. Khasanov, et al., Fundamental’nye Issled., No. 10-2, 270–279 (2016).Google Scholar
- 22.V. Burdovitsin, A. Zenin, A. Klimov, et al., Adv. Mater. Res., 872, 150–156 (2014).CrossRefGoogle Scholar
- 23.A. V. Kazakov, A. S. Klimov, and A. A. Zenin, Proc. ТUSUR, No. 2, Part 2 (26), 186–189 (2012).Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019