Generation of Boron Ions for Beam and Plasma Technologies
- 8 Downloads
The urgency of the study of generation of beams and plasmas containing boron ions is caused by their application in ion-beam and plasma technologies of modification of the surface properties of not only semiconductors, but also structural materials. This is due to the fact that boron compounds are hard and chemically resistant materials that can be used to create hardening and protective surface coatings for a wide nomenclature of details. The operating principle and the characteristics of the experimental setup developed for generation of plasma and boron ion beams intended for creation of such coatings are presented, including an ion source based on vacuum arc with separation of boron isotopes in a magnetic field intended for highdose ion implantation, a plasma generator with boron target intended for obtaining coatings by magnetron sputtering, and a forevacuum electron source intended for synthesis of surface boron-containing coatings by electron beam evaporation.
Keywords
boron ions plasma ion implanter electron beam evaporation thin boron filmsPreview
Unable to display preview. Download preview PDF.
References
- 1.J. H. Freeman, Nucl. Instrum. Methods, 22, 306–316 (1963).ADSCrossRefGoogle Scholar
- 2.J. M. Williams, C. C. Klepper, et al., AIP Conf. Proc., 1066, 469–472 (2008).ADSCrossRefGoogle Scholar
- 3.V. I. Gushenets, E. M. Oks, and A. S. Bugaev, in: Proc. 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Greifswald (2018), pp. 411–414.Google Scholar
- 4.V. P. Frolova, V. I. Gushenets, et al., IEEE Trans. Plasma Sci., 45, 2070–2074 (2017).ADSCrossRefGoogle Scholar
- 5.J. Hahn, M. Freidrich, R. Pintaske, et al., Diam. Relat. Mater., 5, 1103–1112 (1996).ADSCrossRefGoogle Scholar
- 6.J. Andersson and A. Anders, Phys. Rev. Lett., 102, 045003 (2009).ADSCrossRefGoogle Scholar
- 7.E. M. Oks and A. Anders, Rev. Sci. Instrum., 81, 02B306 (2010).CrossRefGoogle Scholar
- 8.V. I. Gushenets, E. M. Oks, K. P. Savkin, et al., Rev. Sci. Instrum., 81, 02B303 (2010).CrossRefGoogle Scholar
- 9.Y. G. Yushkov, A. V. Tyunkov, E. M. Oks, et al., J. Appl. Phys., 120, 233302 (2016).ADSCrossRefGoogle Scholar
- 10.D. B. Zolotukhin, A. V. Tyunkov, and Y. G. Yushkov, Appl. Phys., No. 6, 39–43 (2017).Google Scholar
- 11.A. S. Bugaev, A. V. Vizir, et al., Laser and Particle Beams, 21, No. 2, 139–156 (2003).ADSCrossRefGoogle Scholar
- 12.A. G. Nikolaev, E. M. Oks, A. V. Vizir, et al., Rev. Sci. Instrum., 87, 02A902 (2016).CrossRefGoogle Scholar
- 13.A. S. Bugaev, V. I. Gushenets, G. Y. Yushkov, et al., Russ. Phys. J., 44, No. 9, 912–920 (2001).CrossRefGoogle Scholar
- 14.K. P. Savkin, Y. G. Yushkov, et al., Rev. Sci. Instrum., 81, 02A501 (2010).CrossRefGoogle Scholar
- 15.P. Oliviera, The Elements: Periodic Table Reference, Pediapress.com (2012).
- 16.A. S. Bugaev, V. I. Gushenets, A. G. Nikolaev, et al., Russ. Phys. J., 43, No. 2, 96–103 (2000).CrossRefGoogle Scholar
- 17.E. M. Oks, A. V. Tyunkov, Y. G. Yushkov, et al., Surf. Coat. Technol., 325, 1–6 (2017).CrossRefGoogle Scholar
- 18.D. B. Zolotukhin, A. V. Tyunkov, et al., Rev. Sci. Instrum., 86, 123301 (2015).ADSCrossRefGoogle Scholar
- 19.Tian Yongjun, Xu Bo, Yu Dongli, et al., Nature, 493, 385–388 (2013).ADSCrossRefGoogle Scholar