Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1109–1116 | Cite as

Generation of Deuterium Ions in a Vacuum Arc with Composite Gas-Saturated Cathode and in a Low-pressure Arc

  • A. G. NikolaevEmail author
  • E. M. Oks
  • V. P. Frolova
  • G. Yu. Yushkov
Article
  • 5 Downloads

Plasma containing deuterium ions is used, for example, to generate neutron flows. Neutrons are generated in nuclear reactions of interaction of accelerated ion beams extracted from deuterium plasma with a solid-state target containing heavy hydrogen isotopes – deuterium or tritium. Deuterium plasma was produced in two types of arc discharge with cold cathode: in a vacuum arc with composite cathode saturated with deuterium and in a low-pressure arc with inlet of gaseous deuterium into the discharge gap. Results of studies of the mass-to-charge fractions of the plasma of these discharges are presented, and a comparative analysis of the methods of deuterium ion generation in such discharge systems is performed.

Keywords

vacuum arc plasma deuterium gas-saturated cathode ion beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Anders, Phys. Rev. E, 55, 969–981 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    K. P. Savkin, Y. G. Yushkov, A. G. Nikolaev, et al., Rev. Sci. Instrum., 81, 02A501 (2010).Google Scholar
  3. 3.
    A. G. Nikolaev, E. M. Oks, K. P. Savkin, et al., J. Appl. Phys., 116, 213303 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Belous, A. S. Kuprin, S. N. Dub, et al., J. Superhard Mater., 35, 20–24 (2013).CrossRefGoogle Scholar
  5. 5.
    Yu. F. Ivanov, V. V. Shugurov, O. V. Krysina, et al., Russ. Phys. J., 60, No. 5, 875–883 (2017).CrossRefGoogle Scholar
  6. 6.
    V. P. Frolova, V. I. Gushenets, A. G. Nikolaev, et al., IEEE Trans. Plasma Sci., 45, 2070–2074 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu. Yushkov, Russ. Phys. J., 60, No. 9, 1528–1532 (2017).CrossRefGoogle Scholar
  8. 8.
    A. G. Nikolaev, E. M. Oks, A. V. Vizir, et al., Rev. Sci. Instrum., 87, 02A902 (2016).Google Scholar
  9. 9.
    C. Monnina, P. Bacha, P. A. Tullea, et al., Nucl. Instrum. Methods Phys. Res. A, 480, 214–222 (2002).Google Scholar
  10. 10.
    R. B. Baksht, V. I. Oreshkin, and A. G. Rousskikh, Phys. Plasmas, 20, 082701 (2013).Google Scholar
  11. 11.
    A. A. Bitulev, S. V. Churin, N. N. Shchitov, et al., Atom. Energy, 118, 354–359 (2015).CrossRefGoogle Scholar
  12. 12.
    A. G. Nikolaev, E. M. Oks, V.P. Frolova, et al., Tech. Phys., 62, 701–707 (2017).CrossRefGoogle Scholar
  13. 13.
    V. P. Frolova, A. G. Nikolaev, E. M. Oks, et al., in: Proc. 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Greifswald (2018), pp. 447–450.Google Scholar
  14. 14.
    A. G. Nikolaev, E. M. Oks, K. P. Savkin, et al., Rev. Sci. Instrum., 83, 02A501 (2012).Google Scholar
  15. 15.
    S. A. Barengolts, D. Y. Karnaukhov, A. G. Nikolaev, et al., Tech. Phys., 60, 989–999 (2015).CrossRefGoogle Scholar
  16. 16.
    A. S. Bugaev, A. V. Vizir, V. I. Gushenets, et al., Russ. Phys. J., 60, No. 8, 115–123 (2017).CrossRefGoogle Scholar
  17. 17.
    I. G. Brown, Rev. Sci. Instrum., 65, 3061–3082 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    A. S. Bugaev, V. I. Gushenets, A. G. Nikolaev, et al., Russ. Phys. J., 43, No. 2, 96–103 (2000).CrossRefGoogle Scholar
  19. 19.
    J. E. Galvin, I. G. Brown, and R. A. MacGill, Rev. Sci. Instrum., 61, 583–585 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    G. Y. Yushkov, A. G. Nikolaev, V. P. Frolova, et al., Phys. Plasmas, 24, 123501 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    A. Kaneda, M. Yamamoto, S. Naito, et al., J. Phys.: Condens. Matter, 10, 4645–4657 (1998).ADSGoogle Scholar
  22. 22.
    G. Y. Yushkov, A. Anders, E. M. Oks, and I. G. Brown, J. Appl. Phys., 88, 5618–5622 (2000).Google Scholar
  23. 23.
    A. Anders and G. Y. Yushkov, J. Appl. Phys., 91, 4824–4832 (2002).Google Scholar
  24. 24.
    S. P. Bugaev, A. G. Nikolaev, E. M. Oks, et al., Rev. Sci. Instrum., 65, 3119–3125 (1994).Google Scholar
  25. 25.
    E. M. Oks and G. Y. Yushkov, Russ. Phys. J., 37, 222–229 (1994).CrossRefGoogle Scholar
  26. 26.
    A. G. Nikolaev, E. M. Oks, and G. Y. Yushkov, Tech. Phys., 43, 514–517 (1998).CrossRefGoogle Scholar
  27. 27.
    E. M. Oks, I. G. Brown, M. R. Dickinson, et al., Appl. Phys. Lett., 67, 200–202 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    A. Anders, G. Yushkov, E. Oks, et al., Rev. Sci. Instrum., 69, 1332–1335 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. G. Nikolaev
    • 1
    Email author
  • E. M. Oks
    • 1
    • 2
  • V. P. Frolova
    • 1
    • 2
  • G. Yu. Yushkov
    • 1
  1. 1.Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations