Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1103–1108 | Cite as

Study of the Cathode Sheath Dynamics After Arc Current Zero Crossing Using a Two-Dimensional Langmuir Probe System

  • A. V. SchneiderEmail author
  • S. A. Popov
  • E. L. Dubrovskaya
  • A. V. Batrakov
Article
  • 1 Downloads

A two-dimensional system of miniature Langmuir probes operating in the electron saturation current mode is proposed. With its help, the spatial distribution of plasma density near the discharge gap and the dynamics of cathode-plasma sheath extension are investigated after the high-current vacuum-arc discharge crosses zero current. The proposed methodology and the results obtained are urgent for investigating processes of current interruption in vacuum circuit breakers.

Keywords

vacuum circuit breaker Langmuir probe cathode sheath high-current vacuum arc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. A. Van Lanen, R. P. P. Smeets, M. Popov, and L. Van der Sluis, in: Proc. 22th Int. Symp. on Discharges and Electrical Insulation in Vacuum (22th ISDEIV), Matsue (2006), pp. 212–215.Google Scholar
  2. 2.
    A. V. Schneider, S. A. Popov, A. V. Batrakov, et al., IEEE Trans. Plasma Sci., 39, No. 6, 13349–1353 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Klajn, IEEE Trans. Plasma Sci., 33, No. 5, 1611–1617 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Schneider, S. A. Popov, and A. V. Batrakov, Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 7/2, 373–378 (2013).Google Scholar
  5. 5.
    P. Sarrailh et al., J. Phys. D, 41, No. 1, 015203 (2008).Google Scholar
  6. 6.
    Y. Mo et al., in: Proc. 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum (28th ISDEIV), Greifswald (2018), pp. 239–242.Google Scholar
  7. 7.
    P. G. Slade, The Vacuum Interrupter. Theory, Design, and Application, Ch. 2, CRC Press, New York (2008).Google Scholar
  8. 8.
    E. V. Yakovlev et al., Russ. Phys. J., 61, No. 6, 1034–1038 (2018).Google Scholar
  9. 9.
    A. Khakpour, S. Franke, R. Methling, et al., IEEE Trans. Plasma Sci., 45, No. 8, 2126–2134 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Schneider et al., Russ. Phys. J., 61, No. 7, 1324–1328 (2018).Google Scholar
  11. 11.
    S. Popov, A. Schneider, E. Dubrovskaya, and A. Batrakov, in: Proc. 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum (28th ISDEIV), Greifswald (2018), pp. 259–262.Google Scholar
  12. 12.
    V. A. Lavrinovich, S. A. Popov, A. V. Schneider, and A. V. Batrakov, in: Proc. 26th Int. Symp. on Discharges and Electrical Insulation in Vacuum (26th ISDEIV), Mumbai (2014), pp. 505–508.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Schneider
    • 1
    Email author
  • S. A. Popov
    • 1
  • E. L. Dubrovskaya
    • 1
  • A. V. Batrakov
    • 1
  1. 1.Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations