Advertisement

Russian Physics Journal

, Volume 62, Issue 6, pp 996–1000 | Cite as

Cumulation of a High-Current Electron Beam During a Nanosecond High-Voltage Discharge in a Low-Pressure Diode

  • M. I. LomaevEmail author
  • V. F. Tarasenko
  • A. V. Dyatlov
Article
  • 3 Downloads

The results of an experimental investigation of the effect of cumulation of a beam of runaway electrons formed in a high-voltage nanosecond discharge at a reduced air pressure are presented. The optimal conditions of this effect in a discharge gap in a tubular cathode – grounded planar anode geometry were achieved at an air pressure of ≈5 Pa and an interelectrode gap of 2.75 mm. An electron-beam current pulse is recorded with a high time resolution (up to about 80 ps) behind the flat foil anode. It is found out that due to this effect a through hole is formed in a 20 μm-thick aluminum foil after 2–3 discharge pulses. The results obtained suggest that the electron energy in the second part of the beam current pulse is lower than that in its first part.

Keywords

electron beam cumulation effect runaway electrons high-voltage nanosecond discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Tarumov, Generation and Focusing of High-Current Relativistic Electron Beams [in Russian], (Ed. L. I. Rudakova), Energoatomizdat, Moscow (1990).Google Scholar
  2. 2.
    D. I. Proskurovskii, V. I. Rotstein, A. F. Shubin, and E. B. Yankelevich, Zh. Tekh. Fiz., 45, Iss. 10, 2125–2143 (1975).Google Scholar
  3. 3.
    K. I. Almazova, A. N. Belonogov, V. V. Borovkov, et al., Tech. Phys., 63, Iss. 6, 801–805 (2018).CrossRefGoogle Scholar
  4. 4.
    E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, et al., Tech. Phys. (2008) 53: 1560. https://doi.org/ https://doi.org/10.1134/S1063784208120050.ADSCrossRefGoogle Scholar
  5. 5.
    E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and V. F. Tarasenko, Izv. VUZov. Fiz., 58, No. 9/2, 54–58 (2015).Google Scholar
  6. 6.
    S. Anishchenko, V. Baryshevsky, N. Belous, et al., IEEE Trans. Plasma Sci., 45, No. 10, 2739–2743 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. G. Burachenko, V. F. Tarasenko, I. D. Kostyrya, and E. Kh. Baksht, Atm. Ocean. Optics, 31. No. 01, 96–100 (2018).CrossRefGoogle Scholar
  8. 8.
    V. I. Baryshnikov and V. L. Paperny, Phys. Plasmas, 25, No. 8, 083106 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Oleshko, V. F. Tarasenko, A. G. Burachenko, and V. V. Nguyen, Tech. Phys. Lett, 45(4), 309–313. https://doi.org/ https://doi.org/10.1134/S1063785019040023 ADSCrossRefGoogle Scholar
  10. 10.
    G. A. Mesyats, S. D. Korovin, V. V. Rostov, et al., Proc. IEEE, 92, Iss. 7, 1166–1179 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. I. Lomaev
    • 1
    • 2
    Email author
  • V. F. Tarasenko
    • 1
    • 2
  • A. V. Dyatlov
    • 2
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations