Russian Physics Journal

, Volume 62, Issue 6, pp 972–983 | Cite as

Physical Principles of the Method of Low-Frequency Piezothromboelastography for Studying Rheological Properties of Whole Blood

  • V. P. DemkinEmail author
  • S. V. Melnichuk
  • V. V. Udut
  • I. I. Tyutrin
  • O. V. Demkin

The paper expounds physical principles of the low-frequency piezothromboelastography method for studying viscous properties of whole blood and diagnosis of the hemostatic potential. A mathematical model of ultrasonic vibrations in a viscous fluid has been developed. An ARP-01M “Mednord” piezothromboelastograph is used to carry out a numerical experiment to study the operational modes of a piezoelectric sensor and its applicability for measuring the dynamics of the viscous properties of whole blood. It is shown that the piezoelectric sensor reaches the optimal operational mode with the configuration of the needle-resonator in the form of a rectilinear rod with a loop. The maximum sensitivity in measuring the amplitude-frequency signal characteristics with a recording piezoelement is observed at 2.95 kHz. A numerical experiment studying the influence of a viscous medium on changes in the amplitude-frequency characteristics of vibrations of the needle-resonator of the piezoelectric transducer with allowance for the viscous friction force magnitude has been performed. The viscous properties of water and glycerin are used as an example. Calculations have been performed for two limiting magnitudes of the viscous force encompassing the interval of changes of the whole blood viscosity in the process of coagulation. It is demonstrated that the method has sufficient sensitivity to changes in the viscous characteristics of blood and to the dynamics of changes of these characteristics during coagulation and hence, has high measurement accuracy.


rheology non-Newtonian fluid whole blood coagulation numerical modeling dynamics of the blood viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. J. Glaser and R.L. Ehman, in: Magnetic Resonance Elastography, Vol. XII, S. K. Venkatesh and R. L. Ehman, eds. (2014), pp. 3–18.Google Scholar
  2. 2.
    J. C. Cardenas, C. M. Rein-Smith, and F. C. Church, in: Encyclopedia of Cell Biology, Vol. 1 (2016), pp. 714–722.Google Scholar
  3. 3.
    S. Palta, R. Saroa, and A. Palta, Ind. J. Anaesth., 58, No. 5, 515–523 (2014).CrossRefGoogle Scholar
  4. 4.
    H. H. Versteeg, J. W. M. Heemskerk, M. Levi, et al., Physiol. Rev., 93, 327–358 (2013).CrossRefGoogle Scholar
  5. 5.
    C.-C. Huang, Y.-H. Lin, T.-Y. Liu, et al., J. Med. Biol. Eng., 31, 79–86 (2011).CrossRefGoogle Scholar
  6. 6.
    J. D. Dias, E. I. Haney, B. A. Mathew, et al., Arch. Pathol. Lab. Med., 141, 569–577 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Thakur and A. B. Ahmed, Int. J. Perioperative Ultrasound and Appl. Technol., 1, No. 1, 25–29 (2012).CrossRefGoogle Scholar
  8. 8.
    I. I. Tyutrin and V. V. Udut, Low-Frequency Piezothromboelastography of Whole Blood: Algorithms of Diagnostics and Correction of Hemostasiological Disorders [in Russian], Publishing House of Tomsk State University, Tomsk (2016).Google Scholar
  9. 9.
    S. J. Hund, M. V. Kameneva, and J. F. Antaki, Fluids, 2, No. 10, 2–17 (2017).Google Scholar
  10. 10.
    A. A. Butylin, M. A. Panteleev, and F. I. Ataullakhanov, Ross. Khim. Zh., LI, No. 1, 45–50 (2007).Google Scholar
  11. 11.
    M. A. Solov’ev, V. V. Udut, I. I. Tyutrin, et al., Med.-Biol. Soc.-Psykhol. Probl. Bezop. Chrezv. Situat., No. 1, 96–102 (2015).Google Scholar
  12. 12.
    M. N. Lebedev, E. V. Tereshchenkova, I. I. Tyutrin, et al., Bull. SB RAMS, 34, No. 6, 61–66 (2014).Google Scholar
  13. 13.
    V. F. Klimenkova, M. А. Solov’ev, and V. A. Ivanova, Klin. Anestez. Intens. Terapiya, No. 2(4), 53–59 (2014).Google Scholar
  14. 14.
    M. N. Lebedev, E. V. Tereshchenkova, A. M. Ageenko, et al., Klin. Anestez. Intens. Terapiya, No. 1(5), 37–43 (2015).Google Scholar
  15. 15.
    M. A. Panteleev and F. I. Ataullakhanov, Klin. Onkogematol., 1, No. 2, 174–181 (2008).Google Scholar
  16. 16.
    A. Sarvazyan, T. J. Hall, M. W. Urban, et al., Curr. Med. Imaging Rev., 7, No. 4, 255–282 (2011).CrossRefGoogle Scholar
  17. 17.
    D. Bolliger, M. D. Seeberger, and K. A. Tanaka, Transfus. Med. Rev., 26, No. 1, 1–13 (2012).CrossRefGoogle Scholar
  18. 18.
    T. V. Galochkina and V. A. Vol’pert, Komp. Issled. Model., 9, No. 3, 469–486 (2017).Google Scholar
  19. 19.
    A. E. Medvedev, Matem. Biol. Bioinform., 6, No. 2, 228–249 (2011).CrossRefGoogle Scholar
  20. 20.
    V. N. Matveenko and E. A. Kirsanov, Bull. Mosk. Univ. Ser. 2. Khimiya, 52, No. 4, 243–276 (2011).Google Scholar
  21. 21.
    N. Bessonov, A. Sequeira, S. Simakov, et al., Math. Model. Nat. Phenom., 11, No. 1, 1–25 (2016).MathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Quemada, Biorheology, 18, 501–516 (1981).CrossRefGoogle Scholar
  23. 23.
    Z. Mimouni, Open J. Biophys., 6, 29–33 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    A. Marcinkowska-Gapin’ska, J. Gapinski, W. Elikowski, et al., Med. Bio. Eng. Comput., 45, No. 9, 837–844 (2007).CrossRefGoogle Scholar
  25. 25.
    V. I. Erofeev, V. V. Kazhaev, and N. P. Semerikova, Waves in Rods. Dispersion. Dissipation. Nonlinearity [in Russian], Fizmatlit, Moscow (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. P. Demkin
    • 1
    Email author
  • S. V. Melnichuk
    • 1
  • V. V. Udut
    • 1
    • 2
  • I. I. Tyutrin
    • 3
  • O. V. Demkin
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Scientific-Research Institute of Pharmacology and Regenerative Medicine Named after E. D. GoldbergTomskRussia
  3. 3.Siberian State Medical UniversityTomskRussia

Personalised recommendations