Advertisement

Evolution of Dislocation Structure Parameters in Deformed Polycrystalline FCC Solid Solutions

  • N. A. KonevaEmail author
  • L. I. Trishkina
  • T. V. Cherkasova
Article

The paper presents the research results of the strain hardening and evolution of the dislocation structure parameters in Cu–Mn polycrystalline solid solutions having the average grain size of 20, 120 and 240 μm. The dislocation structure is studied on a transmission electron microscope. The density of scalar dislocations, geometrically necessary dislocations, statistically stored dislocations and misoriented deformation boundaries is measured. It is shown that these parameters change with deformation and depend on the grain size. It is found that the highest degree of accumulation of geometrically necessary dislocations occurs during the formation of the deformation boundaries.

Keywords

solid solution polycrystal grain size dislocation structure geometrically necessary dislocation statistically stored dislocation deformation boundaries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Ashby, Philos. Mag., 21, No. 170, 399–424 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, New Methods in Physics and Mechanics of Deformable Solid [in Russian], TSU, Tomsk (1990), pp. 83–93.Google Scholar
  3. 3.
    M. A. Shtremel', Strength of Alloys. Pt 1. Lattice Defects [in Russian], Metallurgiya, Moscow (1982), 280 p.Google Scholar
  4. 4.
    N. A. Koneva, S. F. Kiseleva, and N. A. Popova, Structural Development and Internal Stress Fields. Austenite Steel [in Russian], LAP LAMBERT Academic Publishing, Saarbrücken, Deutschland (2017), 148 p.Google Scholar
  5. 5.
    V. Randle, J. Mater. Sci., 44, 4211–4218 (2009).Google Scholar
  6. 6.
    W. Pantleon, Scripta Mater., 58, 994–997 (2008).CrossRefGoogle Scholar
  7. 7.
    B. S. El-Dasher, B. L. Adams, and A. D. Rollet, Scripta Mater., 48, 141–145 (2003).CrossRefGoogle Scholar
  8. 8.
    P. D. Littlewood, T. B. Britton, and A. J. Wilkinson, Acta Mater., 59, 6489–6500 (2011).CrossRefGoogle Scholar
  9. 9.
    A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Fizich. Mezomekh., 16, No. 3, 63–79 (2013).Google Scholar
  10. 10.
    H. Mughrabi, Philos. Mag., 86, Nоs. 25–56, 4037–4054 (2006).Google Scholar
  11. 11.
    B. Abbey, F. Hofman, J. Belmoue, et al., Scripta Mater., 64, 884–887 (2011).CrossRefGoogle Scholar
  12. 12.
    V. A. Starenchenko, O. D. Pantyukhova, D. N. Cherepanov, et al., Plastic Deformation Models of FCC Materials [in Russian], NTL, Tomsk (2011), 244 p.Google Scholar
  13. 13.
    L. P. Kubin and A. Mortensen, Scripta Mater., 48, 119–125 (2003).CrossRefGoogle Scholar
  14. 14.
    C. Zhu, T. Harrington, G. T. Gray III, and K. S. Vecchio, Acta Mater., 155, 104–116 (2018).Google Scholar
  15. 15.
    Dony-Hyun Ahn, M. Kang, L. J. Park, et al., Mater. Sci. Eng. A, A648, 567–576 (2017).Google Scholar
  16. 16.
    Y. Zhang, C. Yang, D. Zhou, et al., Mater. Sci. Eng. A, A740–741, 235–242 (2019).CrossRefGoogle Scholar
  17. 17.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng., A527, 2738–2746 (2010).Google Scholar
  18. 18.
    A. Kundu and D. P. Field, Mater. Sci. A, A667, 435–443 (2016).CrossRefGoogle Scholar
  19. 19.
    X. Liu, X. Zhu, D. Wang, and Q. Fan, Mater. Sci. Eng. A, A746, 322–331 (2019).CrossRefGoogle Scholar
  20. 20.
    V.V. Rybin, High Plastic Deformations and Metal Fracture [in Russian], Metallurgiya, Moscow (1986), 224 p.Google Scholar
  21. 21.
    T. A. Malygin, Phys. Solid State, 48, No. 4, 693–699 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    D. A. Hughes, N. Hansen, and D. J. Bammann, Scripta Mater., 48,147–153 (2003).CrossRefGoogle Scholar
  23. 23.
    E. V. Kozlov, L. I. Trishkina, and N. A. Koneva, FPSM, 8, No. 1, 52–60 (2011).Google Scholar
  24. 24.
    N. A. Koneva, L. I. Trishkina, N. A. Popova, and E. V. Kozlov, Russ. Phys. J., 57, No. 2, 187–196 (2014).CrossRefGoogle Scholar
  25. 25.
    N. A. Koneva, L. I. Trishkina, T. V. Cherkasova, and E. V. Kozlov, Bulletin of the Russian Academy of Sciences: Physics, 81, No. 11, 1336–1342 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    S. A. Saltykov, Stereometric Crystallography [in Russian], Metallurgiya, Moscow (1977), 376 p.Google Scholar
  27. 27.
    N. A. Koneva, E. V. Kozlov, and L. I. Trishkina, Metallofizika, 13, No. 10, 49–58 (1991).Google Scholar
  28. 28.
    N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structure and Phase Transformations in Low-Stability States of Metal Systems at Thermal Treatment [in Russian]. NTL, Tomsk (2015), 344 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Koneva
    • 1
    Email author
  • L. I. Trishkina
    • 1
  • T. V. Cherkasova
    • 1
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia

Personalised recommendations