Russian Physics Journal

, Volume 62, Issue 5, pp 886–892 | Cite as

Atomic Models of Mechanical Twinning and <110>-Reorientations in BCC-Crystals

  • I. Yu. LitovchenkoEmail author
  • A. N. Tyumentsev

Atomic models of twinning and formation of <110>-reorientation bands in bcc-crystals via bcc→fcc→bcctransformations accompanied by a change in the reverse transformation system are proposed. It is shown that {112} deformation twins are formed in the course of these transformations, when the shears and directions of homogeneous deformation of the reverse transformation occur in the crystallographically equivalent directions, making 60° angles with the initial direction (during the forward transformation) and the Kurdyumov–Sachs relations are valid. A fulfillment of the Nishiyama–Wassermann orientation relationships or a change in the type such dependence in the course of the reverse transformations gives rise to reorientation of the crystal lattice of these microbands around the <110>-type directions by the angles 60° or (60 ± 5.23)°. An important feature of these models is a considerable contribution of homogeneous transformation deformation of the martensitic type into the value of plastic deformation of the twin.


deformation mechanisms nanocrystals reversible transformations via alternative pathways mechanical twinning crystal lattice reorientations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. T. Zhu, X. Z. Liao, and X. L. Wu, Prog. Mater. Sci., 57, 1–62 (2012).CrossRefGoogle Scholar
  2. 2.
    J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, Inc. (1982).Google Scholar
  3. 3.
    X. Z. Liao, F. Zhou, E. J. Lavernia, et al., Appl. Phys. Lett., 83, 5062–5064 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    K. S. Kumar, H. Van Swygenhoven, S. Suresh, et al., Acta Mater., 51, 5743–5774 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, D. J. Yu, and K. M. Wang, J. Mater. Sci. Technol., 28, No. 2, 164–168 (2012).CrossRefGoogle Scholar
  6. 6.
    Zhang Y., Millett P. C., Tonks M., et al., Acta Mater., 60, 6421–6428 (2012).CrossRefGoogle Scholar
  7. 7.
    A. V. Korchuganov, A. N. Tyumentsev, K. P. Zolnikov, et al., J. Mater. Sci. Technol., 35, 201–206 (2019).CrossRefGoogle Scholar
  8. 8.
    K. P. Zolnikov, A. V. Korchuganov, and D. S. Kryzhevich, Comput. Mater. Sci., 155, 312–319 (2018).CrossRefGoogle Scholar
  9. 9.
    Yu. Ivanisenko, I. MacLaren, X. Sauvage, et al., Acta Mater., 54, 1659–1669 (2006).CrossRefGoogle Scholar
  10. 10.
    S. J. Wang, H. Wang, K. Du, et al., Nature Commun., 5, 3433 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    A. Latapie and D. Farkas, Modelling Simul. Mater. Sci. Eng., 11, 745–753 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    A. N. Tyumentsev, I. Yu. Litovchenko, Yu. P. Pinzhin, et al., Dokl. Akad. Nauk, 403, No. 5, 623–626 (2005).Google Scholar
  13. 13.
    A. N. Tyumentsev, N. S. Surikova, I.Yu. Litovchenko, et al., Acta Mater., 52, 2067–2074 (2004).CrossRefGoogle Scholar
  14. 14.
    A. N. Tyumentsev, Yu. P. Pinzhin, I. A. Ditenberg, et al., Zh. Fiz. Mezomekh., 9, No. 3, 33–45 (2006).Google Scholar
  15. 15.
    A. N. Tyumentsev, I. A. Ditenberg, A. S.Tsverova, et al., Problems of Atomic Science and Technology. Thermonuclear Fusion, 41, Iss. 4, 48–64 (2018).Google Scholar
  16. 16.
    F. A. Kassan-Ogly, V. E. Naysh, and I. V Sagardze, Fiz. Met. Metalloved., 65, No. 3, 481–492 (1988).Google Scholar
  17. 17.
    I. A. Ditenberg, A. N. Tyumentsev, Russ. Phys. J., 53, No. 7, 706–713 (2010).CrossRefGoogle Scholar
  18. 18.
    I. A. Ditenberg, A. N. Tyumentsev, and Ya. V. Shuba, Russ. Phys. J., 53, No. 8, 809–817 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Intstitute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations