Advertisement

Nonlinear Screening and the Metal–Insulator Transition in a Two-Dimensional Electron Gas

  • A. A. VasilchenkoEmail author
  • G. F. Kopytov
Article
  • 5 Downloads

The density functional theory is used to study the nonlinear screening properties of a two-dimensional electron gas in a strong magnetic field. The Kohn-Sham equations for two-dimensional electrons are solved numerically. It is shown that at low electron densities, two electrons are localized on impurities and the wave functions of these electrons do not overlap with the wave functions of other electrons. The phase diagram of the metal – insulator transition in a magnetic field is constructed.

Keywords

metal-insulator transition screening the Kohn-Sham equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, et al., Phys. Rev. B, 50, 8039 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    S. V. Kravchenko, W. E. Mason, G. E. Bowker, et al., Phys. Rev. B, 51, 7038 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys., 67, 1 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    E. L. Shangina and V. T. Dolgopolov, Usp. Fiz. Nauk, 173, 801 (2003).CrossRefGoogle Scholar
  5. 5.
    A. A. Shashkin, Usp. Fiz. Nauk, 175, 139 (2005).CrossRefGoogle Scholar
  6. 6.
    D. A. Knyazev, O. E. Omel’yanovskii, V. M. Pudalov, and I. S. Burmistrov, Pisma Zh. Eksp. Teor. Fiz., 84, 780 (2006).Google Scholar
  7. 7.
    D. A. Knyazev, O. E. Omel’yanovskii, V. M. Pudalov, and I. S. Burmistrov, Phys. Rev. Lett., 100, 046405 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    V. M. Pudalov, M. D’Iorio, and J. W. Campbell, Pisma Zh. Eksp. Teor. Fiz., 57, 592 (1993).Google Scholar
  9. 9.
    F. Stern and W. E. Howard, Phys. Rev., 163, 816 (1967).ADSCrossRefGoogle Scholar
  10. 10.
    A. Fetter, Ann. Phys. (N. Y.), 81, 367 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    N. J. M. Horing, H. C. Tso, and G. Gumbs, Phys. Rev. B, 36, 1588 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    V. Gudmundsson, Solid State Commun., 74, 63 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    E. E. Zaremba, I. Nagy, and P. M. Echenique, Phys. Rev. B, 71, 125323 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Vasilchenko and N. A. Yakovenko, Inzhenern. Fiz., No. 5, 2 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kuban State UniversityKrasnodarRussia

Personalised recommendations