Peculiarities of Structure and Phase Composition of Ternary NiMn–NiTi Alloys with a Quasi-Binary Crosssection

  • E. S. BelosludtsevaEmail author
  • E. B. Marchenkova
  • A. V. Pushin
  • V. G. Pushin
  • A. É. Svirid

The influence of a chemical composition on the phase composition, stability, and crystal structure type of the austenitic and martensitic ternary NiMn–NiTi alloys with a quasi-binary cross-section is analyzed. The temperature-concentration limits of their existence are determined. It is found out that doping of these alloys with titanium decreases the critical temperatures of thermoelastic martensitic transformations compared to those of the basic binary intermetallic compound NiMn. In the alloys, doped with more than 15 at.% titanium, phase decomposition is observed, followed by the formation of titanium-rich (Ni3Ti) ternary precipitates of the 4H-HCP type, which form a Widmanstatten substructure.


phase composition microstructure decomposition stratification martensite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Khachin, V. G. Pushin, and V. V. Kondratiev, Titanium Nickelide. Structure and Properties [in Russian], Nauka, Moscow (1992).Google Scholar
  2. 2.
    V. G. Pushin, V. V. Kondratiev, and V. N. Khachin, Pre-transitional Phenomena and Martensitic Transformations [in Russian], UrD RAS (1998).Google Scholar
  3. 3.
    A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, and V. V. Kulagina, Low-Stability Pre-transitional Structures in Titanium Nickelide [in Russian], NTL Publ., Tomsk (2004).Google Scholar
  4. 4.
    P. L. Potapov, Scripta Metallurg. et Material., 31, No. 9, 1243–1248 (1994).CrossRefGoogle Scholar
  5. 5.
    P. L. Potapov, N. A. Polyakova, V. A. Udovenko, et al., Z. Metallk., 87, Iss. 1, 33–39 (1996).Google Scholar
  6. 6.
    D. Schryvers, J. Phys. IV France, 7, No. C5, 109–118 (1997).Google Scholar
  7. 7.
    E. S. Belosludtseva, N. N. Kuranova, N. I. Kourov, et al., Tech. Phys., 60, Iss. 9, 1330–1334 (2015).CrossRefGoogle Scholar
  8. 8.
    Z. Y. Wei, E. K. Liu, J. H. Chen, et al., Appl. Phys. Lett., 107, Iss. 2, 022406-1–022406-5 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    V. G. Pushin, N. N. Kuranova, E. V. Marchenkova, et al., Tech. Phys., 58, Iss. 6, 878–887 (2013).CrossRefGoogle Scholar
  10. 10.
    Yu. V. Khlebnikova, L. Yu. Egorova, D. P. Rodionov, et al., Tech. Phys., 61, Iss. 6, 887–897 (2016).CrossRefGoogle Scholar
  11. 11.
    V. D. Klopotov, A. A. Klopotov, A. I. Potekaev, et al., Bull. Tomsk Polytech. Univer., 311, No. 2, 120–125 (2011).Google Scholar
  12. 12.
    Ni–Mn–Ti Diagram, Springer Materials at:

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. S. Belosludtseva
    • 1
    Email author
  • E. B. Marchenkova
    • 1
  • A. V. Pushin
    • 1
    • 2
  • V. G. Pushin
    • 1
    • 2
  • A. É. Svirid
    • 1
  1. 1.M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal University named after the first President of Russia B. N. YeltsinEkaterinburgRussia

Personalised recommendations