Advertisement

Special Features of Thermal and Stress Hysteresis of B2–RB19' Martensitic Transformations in Aged [001]-Oriented Ti–50.6 at.% Ni Single Crystals

  • Е. Е. TimofeevaEmail author
  • E. Yu. Panchenko
  • N. Yu. Surikov
  • A. I. Tagiltsev
  • M. V. Pichkaleva
  • N. G. Larchenkova
  • Yu. I. Chumlyakov
  • V. A. Andreev
Article
  • 12 Downloads

Stress-induced and thermal-induced martensitic transformations (MTs) in compression were investigated in [001]-oriented Ti–50.6 at.% Ni single crystals aged at 573 K for 1.5 h, containing Ti3Ni4 particles. No staging associated with stress-induced B2-R MT is detected. The change in the sequence of stress-induced MT from R–B19' to B2–B19' is accompanied by a change in the slope of the stress-temperature dependence from 3 MPa/K in the first stage to 7.5 MPa/K in the second stage. During stress-induced R–B19' MT, thermal and stress hysteresis significantly decrease with an increase in the applied stress and test temperature. At the stressinduced B2–B19' MT, hysteresis is independent of the stress and temperature.

Keywords

martensitic transformations shape memory effect superelasticity hysteresis aging single crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Wollants, J. R. Roos, and L. Delaey, Prog. Mater. Sci., 37, 227−288 (1993).CrossRefGoogle Scholar
  2. 2.
    Y. I. Chumlyakov, I. V. Kireeva, E. Y. Panchenko, et al., in: High-Strength Single Crystals, in: Shape Memory Alloys: Properties, Technologies, Opportunities, N. Resnina and V. Rubanik, eds., Trans Tech Publications Ltd, Switzerland (2015), pp. 108–174.Google Scholar
  3. 3.
    I. Kaya, H. E. Karaca, M. Souri, et al., Mater. Sci. Eng., 686, 73–81 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Miyazaki and K. Otsuka, Metall. Trans. A, 17, 53−63 (1986).CrossRefGoogle Scholar
  5. 5.
    J. I. Kim and S. Miyazaki, Acta Mater., 53, 4545–4554 (2005).CrossRefGoogle Scholar
  6. 6.
    R. F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H. J. Maier, Acta Mater., 52 3383–3402 (2004).CrossRefGoogle Scholar
  7. 7.
    S. Miyazaki and C. M. Wayman, Acta Metall., 36, 181−192 (1998).CrossRefGoogle Scholar
  8. 8.
    S. Miyazaki, S. Kimura, and K. Otsuka, Philos. Mag. A, 57, 467−478 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    J. I. Kim, Y. Liu, and S. Miyazaki, Acta Mater., 52, 487–499 (2004).CrossRefGoogle Scholar
  10. 10.
    A. L. Roytburd and Ju. Slusker, Scripta Metall. Mater., 32, 761–766 (1995).CrossRefGoogle Scholar
  11. 11.
    P. Sittner, M. Landa, P. Lukas, and V. Novak, Mech. Mater., 38, 475–492 (2006).CrossRefGoogle Scholar
  12. 12.
    I. V. Kireeva, C. Picornell, J. Pons, et al., Acta Mater., 68, 127–139 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Е. Е. Timofeeva
    • 1
    Email author
  • E. Yu. Panchenko
    • 1
  • N. Yu. Surikov
    • 1
  • A. I. Tagiltsev
    • 1
  • M. V. Pichkaleva
    • 1
  • N. G. Larchenkova
    • 1
  • Yu. I. Chumlyakov
    • 1
  • V. A. Andreev
    • 2
    • 3
  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia
  2. 2.MATEK-SMA Ltd.MoscowRussia
  3. 3.A. A. Baikov Institute of Metallurgy and Material Science of the Russian Academy of SciencesMoscowRussia

Personalised recommendations