Advertisement

Strength Properties of Metal–Intermetallic Laminated Composites in Three-Dimensional Model

  • Ya. D. LipatnikovaEmail author
  • A. N. Solov’ev
  • V. A. Starenchenko
  • N. N. Belov
  • Yu. V. Solov’eva
Article
  • 9 Downloads

The paper studies the instability of the plastic flow and fracture of metal-intermetallic laminated composites using a three-dimensional multi-scale model of the dislocation kinetics and mechanics of the elastoplastic medium under the dynamic high-temperature compression. The suggested theoretical stress-strain curves represent the behavior of laminated composites at different deformation temperatures and layer arrangements. It is shown that the inclusion of soft plastic metallic layers into the intermetallic matrix stabilizes the plastic flow of laminated composites, significantly increases the plasticity and time to fracture and decreases the deformation resistance. The layer arrangement has no great effect on the stability of plastic deformation.

Keywords

laminated composites intermetallics plastic deformation fracture L12 alloys mathematical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Starenchenko, Yu. A. Abzaev, and N. A. Koneva, Fiz. Met. Metalloved., 64, No. 6, 1178–1182 (1987).Google Scholar
  2. 2.
    Yu. V. Solov’eva, Ya. D. Lipatnikova, S. V. Starenchenko, et al., Russ. Phys. J., 60, No. 5, 830–840 (2017).CrossRefGoogle Scholar
  3. 3.
    A. Patselov, B. Greenberg, S. Gladkovskii, et al., AASRI Procedia, No. 3, 107–112 (2012).Google Scholar
  4. 4.
    M. I. Karpov, V. P. Korzhov, V. M. Kiiko, et al. Perspektivnye materialy, No. S13, 704–712 (2011).Google Scholar
  5. 5.
    Y. Du, G. Fan, T. Yu, et al., IOP Conf. Ser.: Mater. Sci. Eng., 89, (2015).Google Scholar
  6. 6.
    L. Qin, J. Wang, Q. Wu, et al., J. Alloy. Compd., 712, 69–75 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, X. Cheng, and H. Cai, Mater. Design, 92, 486–493 (2016).CrossRefGoogle Scholar
  8. 8.
    D. E. Alman, C. P. Dogan, J. A. Hawk, and J. C. Rawers, Mat. Sci. Eng. A-Struct., 192, 624–632 (1995).CrossRefGoogle Scholar
  9. 9.
    N. Zobeiry, A. Forghani, C. McGregor, et al., Compos. Struct., 173, 188–195 (2017).CrossRefGoogle Scholar
  10. 10.
    T. Li, F. Grignon, D. J. Benson, et al., Mat. Sci. Eng. A-Struct., 374, 10–26 (2004).CrossRefGoogle Scholar
  11. 11.
    Y. Cao, C. Guo, S. Zhu, et al., Mater. Mat. Sci. Eng. A-Struct., 637, 235–242 (2015).CrossRefGoogle Scholar
  12. 12.
    N. R. Barton, A. Arsenlis, and J. J. Marian, J. Mech. Phys. Solids., 61, 341–351 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    P. S. Volegov, D. S. Gribov, and P. V. Trusov, Fizich. Mezomeh., 18, No. 6, 12–23 (2015).Google Scholar
  14. 14.
    N. N. Belov, Yu. V. Solov’eva, Ya. D. Lipatnikova, et al., Mathematical Simulation from Dislocation Interactions to Macroscopic Deformations [in Russian], V. A. Starenchenko, ed., TSUAB, Tomsk (2015).Google Scholar
  15. 15.
    Yu. V. Solov’eva, Ya. D. Fakhrutdinova, and V. A. Starenchenko, Phys. Met. Metallogr., 116, No. 1, 10–18 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    Ya. D. Lipatnikova, Yu. V. Solov’eva, A. N. Solov’ev, and L. A. Valuiskaya, Russ. Phys. J., 60, No. 4, 609–614 (2017).CrossRefGoogle Scholar
  17. 17.
    L. E. Popov, V. S. Kobytev, and T. A. Kovalevskaya, Russ. Phys. J., 25, No. 6, 520–541 (1982).Google Scholar
  18. 18.
    V. A. Starenchenko, O. D. Pantyukhova, D. N. Cherepanov, et al., Models of Plastic Deformation of FCC Materials [in Russian], NTL, Tomsk (2011).Google Scholar
  19. 19.
    V. A. Starenchenko, Yu. V. Solov’eva, Ya. D. Fakhrutdinova, and L. A. Valuiskaya, Russ. Phys. J., 54, No. 8, 885–897 (2011).CrossRefGoogle Scholar
  20. 20.
    A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Severe Elastoplastic Deformations: Theory, Algorithms, Applications [in Russian], Nauka, Moscow (1986).zbMATHGoogle Scholar
  21. 21.
    N. T. Yugov, N. N. Belov, and A. A. Yugov, Adiabatic Nonstationary Flows Analysis in Three-Dimensional Model (RANET-3), RF Certificate of State Registration of Software No. 2010611042 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ya. D. Lipatnikova
    • 1
    Email author
  • A. N. Solov’ev
    • 1
  • V. A. Starenchenko
    • 1
  • N. N. Belov
    • 1
    • 2
  • Yu. V. Solov’eva
    • 1
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.Research Institute of Applied Mathematics and Mechanics of National Research Tomsk State UniversityTomskRussia

Personalised recommendations