Structure and Phase Composition of Heat-Resistant Ni–Al–Co Alloy After Annealing and Creep

  • N. A. KonevaEmail author
  • A. I. Potekaev
  • E. L. Nikonenko
  • N. A. Popova
  • A. A. Klopotov
  • V. D. Klopotov

The paper presents research into the structure and phase composition of Ni–Al–Co alloy modified by rhenium (~3 аt.%) alloying. Observations are carried out using the transmission electron microscopy. The initial state of the alloy is the state after the directional crystallization. The alloy is further subjected to 900°С annealing during 1143 h. Creep tests are additionally carried out for this alloy at the same temperature and time and 400 MPa load. It is shown that FCC disordered γ- and ordered γ′-phases are major in all alloy states. Secondary phases are found to be σ-phase, χ-phase, Laves and AlRe2 phases. Experiments show that the high temperature annealing changes the phase composition of the alloy. Thus, the amount of the ordered γ′-phase increases, while that of disordered γ-phase decreases. During the creep process, the amount of the former reduces and the amount of the latter increases. The annealing process modifies the phase composition in secondary phases. It is found that the structural modification caused by the creep process differs from that caused by the annealing process. Thus, the creep-induced modification of the cuboid structure in γ′-phase is stronger than due to annealing. Dislocations are observed in γ- and γ′-phases in all states of the alloy. During the annealing process, the dislocation density in γ-phase is higher than in γ′-phase, and vice versa during the creep process. The experiments show that the behavior of the dislocation structures is different during the annealing and creep processes.


heat-resistant alloy structure and phase composition rhenium high-temperature effect dislocation annealing creep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. B. Maslenkov, Refractory and High Temperature Resistant Materials. Physicochemical Principles of Creation [in Russian], Nauka, Moscow (1984), p. 15.Google Scholar
  2. 2.
    E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, Vestnik MGTU im. N. E. Baumana. Ser. Mashinostroenie, 38–52 (2011).Google Scholar
  3. 3.
    B. A. Grinberg and M. A. Ivanov, Ni3Al and TiAl Intermetallic Compounds: Microstructure, Deformation Behavior, Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2002).Google Scholar
  4. 4.
    Ch. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II [Russian translation], Metallurgiya, Мoscow (1995).Google Scholar
  5. 5.
    K. B. Povarova, A. A. Drozdov, N. K. Kazanskaya, and A. E. Morozov, Metals, No. 5. 58–71 (2006).Google Scholar
  6. 6.
    Yu. R. Kolobov, E. N. Kablov, E. V. Kozlov, et al., Structure and Properties of Intermetallic Compounds with Nanophased Hardening [in Russian], MISiS, Moscow (2008).Google Scholar
  7. 7.
    E. V. Kozlov, A. N. Smirnov, E. L. Nikonenko, et al., Phase Morphology and Transformations at Thermal Treatment of Ni–Al–Cr and Ni–Al–Co Superalloys. Scale-Level and Concentration Effects. Innovational Engineering [in Russian], Moscow (2016).Google Scholar
  8. 8.
    E. V. Kozlov, N. A. Koneva, N. A. Popova, and E. L. Nikonenko, Bulletin of the Russian Academy of Sciences: Physics, 72, No. 8, 1029–1032 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    R. C. Reed, The Superalloys – Fundamentals and Applications, University Press, Cambridge (2006).CrossRefGoogle Scholar
  10. 10.
    E. L. Nikonenko, N. A. Popova, T. V. Dement, and N. A. Koneva, Russ. Phys. J., 60, No. 2, 231–235 (2017).CrossRefGoogle Scholar
  11. 11.
    A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on Structure and Phase Composition of Pre-Transition Low-Stable Region of Metal Systems [in Russian], NTL, Tomsk (2014), 488 p.Google Scholar
  12. 12.
    N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structure and Phase Transformations in Low-Stability States of Metal Systems at Thermal Treatment [in Russian], NTL, Tomsk (2015).Google Scholar
  13. 13.
    P. A. Chaplygin, A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).CrossRefGoogle Scholar
  14. 14.
    V. V. Kulagina, A. I. Potekaev, A. A. Klopotov, and M. D. Starostenkov, Russ. Phys. J., 55, No. 4, 353–361 (2012).CrossRefGoogle Scholar
  15. 15.
    A. I. Potekaev, A. A. Klopotov, A. N. Matyunin, E. S. Marchenko, V. E. Gyunter, and Sh. A. Dzhalolov, J. Adv. Mater., 2, No. 4, 387–394, (2011)Google Scholar
  16. 16.
    I. A. Kurzina, A. I. Potekaev, N. A. Popova, et al., Russ. Phys. J., 61, No. 4, 715–721 (2018).CrossRefGoogle Scholar
  17. 17.
    A. I. Potekaev, A. A. Klopotov, V. V. Kulagina, M. D. Starostenkov, et al., Steel Transl., 46, No. 6, 365–369 (2013).CrossRefGoogle Scholar
  18. 18.
    A. A. Klopotov, A. I. Potekaev, E. V. Kozlov, and V. V. Kulagina, Russ. Phys. J., 54, No. 9, 1012–1023 (2012).CrossRefGoogle Scholar
  19. 19.
    V. E. Guenther, A. I. Potekaev, A. A. Klopotov, and Yu. E. Grischenko, Russ. Phys. J., 54, No. 5, 569–575 (2011).CrossRefGoogle Scholar
  20. 20.
    A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, and V. V. Kulagina, Low-Stable Pre-Transition Structures in Nickel and Titanium [in Russian], NTL, Tomsk (2004).Google Scholar
  21. 21.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 10, 1776–1786 (2017).CrossRefGoogle Scholar
  22. 22.
    F. R. N. Nabarro and H. L. Villiers, The Physics of Creep – Creep and Creep-resistant Alloys, CRC Press, London (1995).Google Scholar
  23. 23.
    H. Mughrabi, Mater. Sci. Technol., 25, No. 2, 191–204 (2009).CrossRefGoogle Scholar
  24. 24.
    T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada, Acta Mater., 52, No. 12, 3737–3744 (2004).CrossRefGoogle Scholar
  25. 25.
    Y. Ro, Y. Koizumi, and H. Harada, Mater. Sci. Eng. A, 223, No. 1–2, 59–63 (1997).CrossRefGoogle Scholar
  26. 26.
    C. M. F. Rae and R. C. Reed, Acta Mater., 49, No. 19, 4113–4125 (2001).CrossRefGoogle Scholar
  27. 27.
    T. Sugui, W. Minggang, L. Tang, et al., Mater. Sci. Eng. A, 527, 5444–5451 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Koneva
    • 1
    Email author
  • A. I. Potekaev
    • 2
    • 3
  • E. L. Nikonenko
    • 1
  • N. A. Popova
    • 1
  • A. A. Klopotov
    • 1
    • 2
  • V. D. Klopotov
    • 4
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.V. D. Kuznetsov Siberian Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia
  4. 4.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations