Advertisement

Russian Physics Journal

, Volume 61, Issue 10, pp 1940–1946 | Cite as

Structural Changes in С36 Laves Phase Intermetallic Compound TiCr2 During Hydrogenation–Dehydrogenation Process

  • T. L. MurashkinaEmail author
  • M. S. Syrtanov
  • R. S. Laptev
Article
  • 6 Downloads

The paper deals with melting of titanium and chromium metal powders in plasma of abnormal glow discharge which results in the formation of the hexagonal С36 Laves phase compound TiCr2 with a = 4.928 Å and c = 15.983 Å lattice parameters. The hydrogenation–dehydrogenation process is used to prepare the powder of C36 Laves phase intermetallic compound TiCr. The hydrogenation–dehydrogenation process is performed at 100°C, 2 atm hydrogen pressure and 30 min ageing followed by vacuum cooling. The prepared metal powder is characterized by rounded lamellar and coarse particles 6 ± 2 μm and 21 ± 7 μm in size, respectively.

Keywords

intermetallic compound Laves phase abnormal glow discharge X-ray diffraction hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P. Tarasov, M. V. Lototskii, and V. A. Yartys’, Russ. J. Gen. Chem., 77, No. 4, 694–711 (2007).  https://doi.org/10.1016/j.ijhydene.2014.12.093.CrossRefGoogle Scholar
  2. 2.
    A. N. Perevezentsev, B. M. Andreev, V. K. Kapyshev, et al., Fiz. Elem. Chastits At. Yadra, 19, No. 6, 1386–1439 (1988).  https://doi.org/10.1016/j.ijhydene.2013.07.073.
  3. 3.
    V. A. Yartys’, V. V. Burnasheva, and K. N. Semenenko, Russ. Chem. Rev., 52, No. 4, 299 (1983).  https://doi.org/10.1016/j.jallcom.2013.02.019.
  4. 4.
    B. A. Kolachev, R. E. Shalin, and A. A. Il’in, Alloys for Hydrogen Accumulation [in Russian], Metallurgiya, Moscow (1995).Google Scholar
  5. 5.
    A. Kawasuso, H. Arashima, M., Maekawa, et al., J. Alloy. Compd., 486, 278–283 (2009).  https://doi.org/10.1016/j.jallcom.2009.06.125.
  6. 6.
    Z. Chen, X. Xiao, L. Chen, et al., Int. J. Hydrogen Energ., 38, No. 29, 12803–12810 (2013).CrossRefGoogle Scholar
  7. 7.
    Z. Hang, X. Xiao, S. Li, et al., J. Alloy. Compd., 529, 128–133 (2012).CrossRefGoogle Scholar
  8. 8.
    N. Takeichi, H. T. Takeshita, H. Tanaka, et al., Mater. Lett., 57, No. 8, 1395–1399 (2003).  https://doi.org/10.1016/S0167-577X(02)00995-3.
  9. 9.
    N. Takeichi, H. T. Takeshita, T. Oishi, et al., Mater. Trans., 43, No. 8, 2161–2164 (2002).Google Scholar
  10. 10.
    V. N. Verbetskii, “Synthesis and properties of multicomponent metal hydrides”, DSc Dissertation [in Russian], Moscow (1998).Google Scholar
  11. 11.
    V. V. Kotunov, D. A. Shumakov, V. S. Kraposhin, and K. O. Bazaleeva, Materialoved., No. 5, 23–27 (2007).Google Scholar
  12. 12.
    D. V. Sidelev, G. A. Bleikher, M. Bestetti, et al., Vacuum, 143, 479–485 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    W. Baumann, A. Leineweber, and E. J. Mittemeijer, Intermetallics, 19, No. 4, 526–535 (2011).CrossRefGoogle Scholar
  14. 14.
    G. A. Bleikher and V. P. Krivobokov, Surface Erosion of Solids under Powerful Beams of Charged Particles [in Russian], Nauka, Novosibirsk (2014).Google Scholar
  15. 15.
    L. Luo, C. Wu, S. Yang, et al., J. Alloy. Compd., 645, S178–S183 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. L. Murashkina
    • 1
    Email author
  • M. S. Syrtanov
    • 1
  • R. S. Laptev
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations