Advertisement

Monte Carlo Simulation of Hydrogen Absorption in Palladium and Palladium-Silver Alloy

  • I. S. PetrievEmail author
  • S. N. Bolotin
  • V. Yu. Frolov
  • M. G. Baryshev
  • G. F. Kopytov
  • V. A. Isaev
Article
  • 3 Downloads

The paper presents Monte Carlo simulation of the hydrogen absorption in palladium and palladium-silver alloy of the composition PdxAg1–x (x = 0.7–0.9) at 293–373 K temperature and 0.1 MPa pressure. Hydrogen atoms in palladium lattice locate mostly in octahedral holes in a face-centered cubic unit cell. In palladiumsilver alloy with the increased Ag content, the absorption energy distribution of hydrogen becomes wider. The interatomic Ag–H distance is shorter than Pd–H distance that means that when contacting with Ag atoms, H atoms occupy less stable tetrahedral holes. When the amount of silver in the alloy grows up to 30 аt.% H atoms are more likely to locate in tetrahedral vacancies resulting in the stability decrease of the system with hydrogen dissolved in the bulk of the material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Int. J. Hydrogen Energ., 43, 198–207 (2018).CrossRefGoogle Scholar
  2. 2.
    E. Yu. Mironova, A. A. Lytkina, M. M. Ermilova, et al., Int. J. Hydrogen Energ., 40, 3557–3565 (2015).CrossRefGoogle Scholar
  3. 3.
    A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Petrol. Chem., 57, No. 13, 1219–1227 (2017).CrossRefGoogle Scholar
  4. 4.
    K. S. Rothenberger, A. V. Cugini, B. H. Howard, et al., J. Memb. Sci., 244, 55–68 (2004).CrossRefGoogle Scholar
  5. 5.
    I. S. Petriev, V. Yu. Frolov, S. N. Bolotin, et al., Russ. Phys. J., 58, No. 8, 1044–1048 (2015).CrossRefGoogle Scholar
  6. 6.
    I. S. Petriev, S. N. Bolotin, V. Y. Frolov, et al., Bull. Russ. Acad. Sci., 80, No. 6, 624–626 (2016).CrossRefGoogle Scholar
  7. 7.
    K. Ali Jawad, E. J. Newson, and D. W. T. J. Rippin, J. Memb. Sci., 89, No. 1–2, 171–184 (1994).Google Scholar
  8. 8.
    S. N. Paglieri and J. D. Way, Sep. Purif. Rev., 31, No. 1, 1–169 (2002).CrossRefGoogle Scholar
  9. 9.
    I. S. Petriev, V. Yu. Frolov, S. N. Bolotin, et al., Russ. Phys. J., 60, 9, 1611–1617 (2018).CrossRefGoogle Scholar
  10. 10.
    I. S. Petriev, S. N. Bolotin, V. Y. Frolov, et al., Bull. Russ. Acad. Sci., 82, No. 7, 807–810 (2018).CrossRefGoogle Scholar
  11. 11.
    O. M. Lovvik and R. A. J. Olsen, J. Alloy. Compd., 330–332, 332–337 (2002).CrossRefGoogle Scholar
  12. 12.
    H. Kurokawa, T. Nakayama, Y. Kobayashi, et al., Catal. Today, 82, 233–240 (2003).CrossRefGoogle Scholar
  13. 13.
    M. P. Shaskol'skaya, Crystallography [in Russian], Vysshaya Shkola, Moscow (1976), 391 p.Google Scholar
  14. 14.
    G. Alefeld and J. Völkl, Hydrogen in Metals. I. Basic Properties, Springer, Berlin (1978), 227 p.CrossRefGoogle Scholar
  15. 15.
    H. Klette and R. Bredesen, Memb. Tech., 2005, 5, 7–9 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. S. Petriev
    • 1
    Email author
  • S. N. Bolotin
    • 1
  • V. Yu. Frolov
    • 1
  • M. G. Baryshev
    • 1
  • G. F. Kopytov
    • 1
  • V. A. Isaev
    • 1
  1. 1.Kuban State UniversityKrasnodarRussia

Personalised recommendations