Structural Organization of Nanocomposite Crystals
Article
First Online:
- 1 Downloads
A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.
Keywords
nanocomposite structure self-similarity principle sol-gel methodPreview
Unable to display preview. Download preview PDF.
References
- 1.R. P. Ozerov and V. A. Streltsov, Poverkhnost. Roentgen, Synkhr. Nyutron Issled., No. 7, 44–51 (1996).Google Scholar
- 2.F. Rothen and P. Pieranski, Phys. Rev. E, 53, No. 3, 2828–2842 (1996).ADSCrossRefGoogle Scholar
- 3.M. I. Visscher and C. E.W. Baner, Phys. Rev. B, 54, No. 4, 2798–2805 (1996).ADSCrossRefGoogle Scholar
- 4.M. A. Kulakov, G. Henn, and B. Bullemer, Surf. Sci., 346, No. 1–3, 49–54 (1996).ADSCrossRefGoogle Scholar
- 5.V. S. Edelman, Phys. Lett. A, 210, No. 1–2, 105–109 (1996).ADSCrossRefGoogle Scholar
- 6.H. Gleiter, J. Appl. Crystallorg., 24, No. 2, 79–90 (1991).CrossRefGoogle Scholar
- 7.K. V. Grinyaev, I. V. Smirnov, I. A. Ditenberg, et al., Russ. Phys. J., 59, No. 12, 2094–2100 (2016).Google Scholar
- 8.P. V. Kosmachev, V. A. Vlasov, and N. K. Skripinnikova, Russ. Phys. J., 60, No. 2, 249–253 (2017).CrossRefGoogle Scholar
- 9.V. N. Nechaev and A. V. Viskovatykh, Russ. Phys. J., 61, No. 2, 216–222(2018).CrossRefGoogle Scholar
- 10.E. Michalski, S. Kasczmarek, and M. Demianiuk, Acta Crystallorg. A, 44, No. 5, 650–657 (1988).CrossRefGoogle Scholar
- 11.S. B. Santra and I. Bose, J. Phys. A, 26, No. 16, 3963–3971 (1993).ADSCrossRefGoogle Scholar
- 12.S. N. Artemenko, A. F. Volkov, and S. V. Zaitsev-Zotov, Usp. Fiz. Nauk, 166, Iss. 4, 434–439 (1996).Google Scholar
- 13.S. V. Rudnev, Comput. Math. Applic., 16, Nо. 5–8, 597–616 (1988).Google Scholar
- 14.I.-F. Sadoc and I. Charvolin, J. Phys. Sec. 1, 2, No. 6, 845–859 (1992).Google Scholar
- 15.A. N. Sergeev, B. S. Semukhin, F. E. Shakalov, et al., in: Abstracts VI All-Russian Conf. on Solid State Chemistry and New Materials, 1, 167–169, Ekaterinburg (1996).Google Scholar
- 16.Yu. V. Borodin, N. N. Konotop, and B. S. Semukhin, in: Abstracts Sci.-Pract. Conf. dedicated to 100-th Anniversary of TPU, 21, Tomsk (1996).Google Scholar
- 17.V. I. Vereshchagin, M. A. Sergeev, B. S. Semukhin, and Yu. V. Borodin, Refractor. Industr. Ceramics, 41, No. 11–12, 440–443 (2000).CrossRefGoogle Scholar
- 18.Y. V. Borodin and A. N. Sergeev, in: Proc. 3rd Int. Forum on Strategic Technology (IFOST-2008), 174–176 (2008).Google Scholar
- 19.Y. Borodin, in: Proc. 6th Int. Forum on Strategic Technology (IFOST-2011), 218–221 (2011).Google Scholar
- 20.M. A. Fedotov, V. V. Molchanov, R. N. Zotov, and F. V. Tuzikov, Russ. J. Inorg. Chem., 53, No. 10, 1621–1627 (2008).CrossRefGoogle Scholar
- 21.V. V. Drobotenko, S. S. Balabanov, and T. I. Storozheva, Vestnik of the N. I. Lobachevsky State University of Nizhniy Novgorod, No. 6, 72–76 (2007).Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019