A Theoretical Investigation of Special Aspects of Nonequilibrium Disclinational-Type Boundaries in Crystalline Materials

  • I. I. SukhanovEmail author
  • I. A. Ditenberg
  • A. N. Tyumentsev

The results of a theoretical analysis of the stress fields and elastic energy distributions of the disclinational grain-boundary structure in nanocrystalline metallic materials as a function of grain size are presented. Considering the superposition of these stresses during screening of the piled-up disclinations it is found out that the maximal values of the principal components of the stress tensors are achieved in the planes of disclination occurrence P = Tr(σij)/3 >  > E/25, while the stress gradients are characterized by the maximum values in the nodal points ∂P/∂x ≈ 0.08 E nm–1 (Е – Young’s modulus). It is determined that a considerable part of the shear stress components is localized inside the grain. It is shown that the characteristic features of the specific elastic energy distribution in these configurations are the local energy maxima, which could be a reason for the physical broadening of the nanograin boundaries.


nonequilibrium grain boundaries disclinations crystal lattice curvature deformation nanocrystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Pumphrey and H. Gleiter, Philosoph. Mag., 32, No. 4, 881–885 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Orlov, V. K. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals [in Russian], Metallurgiya, Moscow (1980).Google Scholar
  3. 3.
    O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  4. 4.
    A. M. Glezer and B. V. Molotilov, Structure and Mechanical Properties of Amorphous Alloys [in Russian], Metallurgiya, Moscow (1992).Google Scholar
  5. 5.
    R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Processing, Structure, and Properties [in Russian], Akademkniga, Moscow (2007).Google Scholar
  6. 6.
    H. Gleiter, Nanostruct. Mater., 6,No. 1–4, 3–14 (1995).CrossRefGoogle Scholar
  7. 7.
    Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, et al., Mater. Sci. Forum Vols., А 204–206, 437–442 (1996).Google Scholar
  8. 8.
    R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov, et al., Metallofizika, 12, No. 5, 124–126 (1990).Google Scholar
  9. 9.
    A. A. Nazarov and D. V. Bachurin, Phys. Metals Metallogr, 96, No. 2, 128–134 (2003).Google Scholar
  10. 10.
    A. A. Nazarov and D. V. Bachurin, Phys. Metals Metallogr, 96, No. 5, 446–451 (2003).Google Scholar
  11. 11.
    K. N. Mikaelyan, I. A. Ovid’ko, and I. A. Romanov, Phys. Metals Metallogr, 90, No. 3, 224–230 (2000).Google Scholar
  12. 12.
    A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Phys. Mesomech., 16, No. 4, 319–334 (2013).CrossRefGoogle Scholar
  13. 13.
    V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. I. Sukhanov
    • 1
    • 2
    Email author
  • I. A. Ditenberg
    • 1
    • 2
  • A. N. Tyumentsev
    • 1
    • 2
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations