Measurement of the Coupling Constant of the Higgs Boson with a \( \overline{tt} \) Heavy Quark Pair
- 1 Downloads
The process of production of a Higgs boson HSM of the Standard Model (the H , h , and A bosons of the Minimal Supersymmetric Standard Model) and a \( \overline{tt} \) heavy fermion pair in arbitrarily polarized electronpositron beams \( {e}^{-}{e}^{+}\to {H}_{SM}\overline{tt}\left({e}^{-}{e}^{+}\to H\overline{tt},{e}^{-}{e}^{+}\to h\overline{tt}, and\;{e}^{-}{e}^{+}\to A\overline{tt}\right) \) is investigated. Analytical expressions for the differential cross sections of the processes are obtained, peculiarities of the behavior of the cross sections as functions of the energies and emission angles of the particles are investigated, and the possibility of measuring the coupling constant of the Higgs boson with a \( \overline{tt} \) quark pair is discussed.
Keywords
Standard model Minimal Supersymmetric Standard Model heavy fermion pair helicity interaction constantPreview
Unable to display preview. Download preview PDF.
References
- 1.A. Djouadi, The Anatomy of Electro-Weak Symmetry Breaking. Vol. 1: The Higgs Boson in the Standard Model, arXiv: hep-ph/0503172v2, 2005; DOI: https://doi.org/10.1016/j.physrep.2007.10.004.
- 2.P. Langacker, The Standard Model and Beyond, CRC Press, Boca Raton (2010); DOI: https://doi.org/10.1063/1.36182.zbMATHGoogle Scholar
- 3.S. K. Abdullayev, Standard Model, Properties of Leptons and Quarks [in Azerbaijani], Baku (2017).Google Scholar
- 4.ATLAS Collaboration, Phys. Lett. B, 716, No. 1, 1–29 (2012); https://doi.org/10.1016/j.physletb.2012.08.020.ADSCrossRefGoogle Scholar
- 5.CMS Collaboration, Phys. Lett. B, 716, No. 1, 30–61 (2012); https://doi.org/10.1016/j.physletb.2012.08.021.ADSCrossRefGoogle Scholar
- 6.V. A. Rubakov, Usp. Fiz. Nauk, 182, No. 10, 1017–1025 (2012).CrossRefGoogle Scholar
- 7.A. V. Lanev, Usp. Fiz. Nauk, 184, No. 9, 996–1004 (2014).CrossRefGoogle Scholar
- 8.D. I. Kazakov, Usp. Fiz. Nauk, 184, No. 9, 1004–1017 (2014).CrossRefGoogle Scholar
- 9.S. K. Abdullayev, L. A. Agamaliyeva, M. Sh. Gojayev, and F. A. Saddigh, Georgian Electronic Scientific Journal (GESJ). Fiz., 1, No. 13, 36–55 (2015).Google Scholar
- 10.S. K. Abdullayev, M. Sh. Gojayev, and F. A. Saddigh, Moscow Univ. Bulletin, No. 4, 4 (2017).Google Scholar
- 11.S. K. Abdullayev and M. Sh. Gojayev, in: Proc. Xth Int. Conf. “Modern Trends in Physics,” Baku (2017).Google Scholar
- 12.Z. Hioki, T. Konishi, and K. Ohkuma, J. High Energy Phys., 07, Nо. 082, 1–14 (2007); arXiv: 0706. 4346v2 [hep-ph] 16. Jul 2007; DOI: https://doi.org/10.1088/1126-6708/2007/07/082.
- 13.M. Greco, Mod. Phys. Lett. A, 30, Nо. 39, 1530031-1–4 (2015); DOI: https://doi.org/10.1142/S0217732315300311.
- 14.T. Han and Z. Liu, Phys. Rev. D, 87, No. 3, 033007 (2013) [arXiv: 1210.7803].Google Scholar
- 15.S. K. Abdullayev, M. Sh. Gojayev, and N. A. Nasibova, Russ. Phys. J., 61, No. 1, 94–101 (2018).CrossRefGoogle Scholar
- 16.A. Djouadi, The Anatomy of Electro-Weak Symmetry Breaking, Vol. 2, arXiv: hep-ph/0503173v2 (2003); DOI: https://doi.org/10.1016/j.physrep.2007.10.005.
- 17.V. D. Shil’tsev, Usp. Fiz. Nauk, 182, No. 10, 1033 (2012).CrossRefGoogle Scholar
- 18.K. Peters, Prospects for beyond Standard Model Higgs boson searches at future LHC runs and other machines; arXiv: 1701.05124v2 [hep-ex] (2017).Google Scholar
- 19.S. K. Abdullayev, M. Sh. Gojayev, and N. A. Nasibova, Russ. Phys. J., 61, No. 7, 1306–1323 (2018).CrossRefGoogle Scholar