Synthesis, Structure and Electromagnetic Properties of Nanocomposites with Three-component FeCoNi Nanoparticles

  • D. G. MuratovEmail author
  • L. V. Kozhitov
  • V. V. Korovushkin
  • E. Yu. Korovin
  • A. V. Popkova
  • V. M. Novotortsev

Infrared heating was used to synthesize FeCoNi/С nanocomposites, where nanoparticles of FeCoNi ternary alloy are stabilized and uniformly distributed in the carbon matrix volume. The authors studied the impact of synthesis temperature and percentage ratio of metals upon the structure, composition and electromagnetic properties. X-ray phase analysis and Mössbauer spectroscopy showed that ternary alloy nanoparticles with different compositions and crystalline lattice types can be formed with the rise in synthesis temperature and iron concentration. Resonator method was used to examine frequency dependencies of relative complex dielectric and magnetic permeabilities of nanocomposites in the range of 3–12 GHz. Calculation of reflection coefficient based on experimental permeability data showed that by varying synthesis temperature and percentage ratio of metals one can control the frequency range of effective absorption of electromagnetic waves. It was established that increase in relative iron content from 33 to 50 rel.% leads to the shift of minimal electromagnetic wave reflection coefficient band from f ~ 12+ GHz to frequency f ~ 6 GHz at identical absorber thickness.


magnetic materials nanoparticles metal-carbon nanocomposites complex dielectric and magnetic permeability loss tangent reflection coefficient Mössbauer spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. P. Gubin, Y. I. Spichkin, G.Yu. Yurkov, and A. M. Tishin, Russ. J. Inorg. Chem., 47, S32 (2002).Google Scholar
  2. 2.
    A. Hui Lu, E. L. Salabas, and F. Schüth, Angew. Chem. Int. Ed., 46, 1222 (2007).Google Scholar
  3. 3.
    Y. H. Xu, J. Bai, and J. P. Wang, JMMM, 311, 131 (2007).ADSGoogle Scholar
  4. 4.
    S. N. Khadzhiev, M. V. Kulikova, M. I. Ivantsov, et al., Pet. Chem., 56, 522 (2016).Google Scholar
  5. 5.
    M. H. Xu, W. Zhong, X. S. Qi, et al., J. Alloys Compounds, 495, 200 (2010).Google Scholar
  6. 6.
    M. Bahgat, Min-Kyu Paek, and Jong-Jin Pak, J. Alloys Compounds, 466, 59 (2008).Google Scholar
  7. 7.
    A. Azizi, H. Yoozbashizadeh, and S. K. Sadrnezhaad, JMMM, 321, 2729 (2009).ADSGoogle Scholar
  8. 8.
    X. Li and S. Takahashi, JMMM, 214, 195 (2000).ADSGoogle Scholar
  9. 9.
    S. B. Dalavia, J. Theerthagiria, M. M. Rajab, and R. N. Panda, JMMM, 344, 30 (2013).ADSGoogle Scholar
  10. 10.
    N. Kr. Prasad and V. Kumar, J. Mater. Sci: Mater. Electron., 26, 10109 (2015).Google Scholar
  11. 11.
    K. Zehani, R. Bez, A. Boutahar, et al., J. Alloys Compounds, 591, 58 (2014).Google Scholar
  12. 12.
    Yong Yang, Caing Xu, Xogxin Xia, et al., J. Alloys Compounds, 493, 549 (2010).Google Scholar
  13. 13.
    X. G. Liu, Z. Q. Ou, D. Y. Geng, et al., Carbon, 48, 891 (2010).Google Scholar
  14. 14.
    N. Poudyal, G. S. Chaubey, C.-B. Rong, et al., Nanotechnology, 24, 345605 (2013).Google Scholar
  15. 15.
    L. M. Zemtsov, G. P. Karpacheva, Polymer Science, Series A [in Russian], 36, Issue 6, 919 (1994).Google Scholar
  16. 16.
    V. V. Kozlov, G. P. Karpacheva, V. S. Petrov, E. V. Lazovskaya Polymer Science, Series A [in Russian], 43, Issue 1, 20 (2001).Google Scholar
  17. 17.
    J. D. Moskowitz and J. S. Wiggins, Polymer Degradation and Stability, 125, 76 (2016).Google Scholar
  18. 18.
    P. Melnikov, V. A. Nascimento, I. V. Arkhangelsky, et al., J. Therm. Anal. Calorim., 115, 145 (2014).Google Scholar
  19. 19.
    V. G. Petrov, V. A. Aleksandrov, M. A. Shumilova, Chem. Phys. & Mesoscopy [in Russian], 16, Issue 1, 152 (2014).Google Scholar
  20. 20.
    I. I. Kalinichenko, A. I. Purtov, Russ. J. Inorg. Chem. [in Russian], 11, Issue 7, 1669 (1966).Google Scholar
  21. 21.
    D. Yu. Karpenkov, D. G. Muratov, L. V. Kozitov, et al., JMMM, 429, 94 (2017).ADSGoogle Scholar
  22. 22.
    L. V. Kozhitov, M. F. Bulatov, V. V. Korovushkin, еt al., J. Nano- Electron. Phys., 7, 04103 (2015).Google Scholar
  23. 23.
    D. G. Muratov, L. V. Kozhitov, D. Yu. Karpenkov, et al., Russ. Phys. J., 60, Issue 11, 1924–1930 (2018).Google Scholar
  24. 24.
    Y. A. Abdu et al., JMMM, 280, 395 (2004).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. G. Muratov
    • 1
    • 2
    Email author
  • L. V. Kozhitov
    • 1
  • V. V. Korovushkin
    • 1
  • E. Yu. Korovin
    • 3
  • A. V. Popkova
    • 4
  • V. M. Novotortsev
    • 5
  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of SciencesMoscowRussia
  3. 3.National Research Tomsk State UniversityTomskRussia
  4. 4.Tver State UniversityTverRussia
  5. 5.N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations