Advertisement

Russian Physics Journal

, Volume 61, Issue 10, pp 1759–1763 | Cite as

Photophysical Constants of the Tetraoxa[8]Circulene Molecule

  • Yu. V. KonyshevEmail author
  • V. N. Cherepanov
  • G. V. Baryshnikov
  • R. R. Valiev
Article
  • 3 Downloads

The rate constants of photophysical processes (radiation rate constant, internal conversion rate constant, and quantum fluorescence yield) have been calculated for the tetraoxa[8]circulene molecule by the INDO/S, TDDFT, and CC2 methods. It is confirmed that the doubly degenerate triplet level Т2 and the level Т1 are located below the first singlet excited level S1. According to the selection rules for the angular momentum, the spin-orbit interaction between the levels S1 and T1 (S1 and T2) is equal to zero. Therefore, the internal conversion is the only nonradiative channel in this molecule. The results of calculations also demonstrate that values of the internal conversion rate constant and the quantum fluorescence yield obtained by the INDO/S method are incorrect.

Keywords

heterocirculenes nonradiative transition constants quantum yield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Marian, WIREs Comput. Mol. Sci., 2, 183–203 (2012).CrossRefGoogle Scholar
  2. 2.
    R. R. Valiev, V. N. Cherepanov, G. V. Baryshnikov, and D. Sundholm, Phys. Chem. Chem. Phys., 20, 6121–6133 (2018).CrossRefGoogle Scholar
  3. 3.
    G. V. Baryshnikov, B. F. Minaev, and V. A. Minaev, Usp. Khim., 84, 455–484 (2015).CrossRefGoogle Scholar
  4. 4.
    H. E. Erdtman and H.-E. Högberg, Tetrahedron Lett., 11, No. 38, 3389–3392 (1970).CrossRefGoogle Scholar
  5. 5.
    R. R. Valiev, V. N. Cherepanov, V. Y. Artyukhov, and D. Sundholm, Phys. Chem. Chem. Phys., 14, 11508–11517 (2012).CrossRefGoogle Scholar
  6. 6.
    R. R. Valiev, V. N. Cherepanov, E. G. Ermolina, et al., J. Mol. Model., 19, 4631–4637 (2013).CrossRefGoogle Scholar
  7. 7.
    R. R. Valiev, E. N. Telminov, T. A. Solodova, et al., Spectrochim. Acta, Part A, 128, 137–140 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    V. Ya. Artyukhov and A. I. Galeeva, Russ. Phys. J., 29, No. 11, 949–952 (1986).Google Scholar
  9. 9.
    C. Hattig and F. J. Weigend, Chem. Phys., 113, 5154–5161 (2000).ADSGoogle Scholar
  10. 10.
    N. Mardirossian and M. Head-Gordon, Mol. Phys., 115, No. 19, 2315–2372 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    R. R. Valiev, V. N. Cherepanov, R. T. Kuznetsova, and E. G. Ermolina, Russ. Phys. J., 55, No. 4, 378–382 (2012).CrossRefGoogle Scholar
  12. 12.
    R. R. Valiev, E. G. Ermolina, Yu. N. Kalugina, et al., Spectrochim. Acta, Part A, 87, 40–45 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    R. R. Valiev, A. K. Drozdova, P. V. Petunin, et al., Russ. Phys. J., 59, No. 2, 197–203 (2016).CrossRefGoogle Scholar
  14. 14.
    R. R. Valiev, K. B. Kopbalina, V. N. Cherepanov, et al., Russ. Phys. J., 57, No. 1, 95–99 (2014).CrossRefGoogle Scholar
  15. 15.
    A. A. Granovsky, J. Chem. Phys., 134, id 214113 (2011).Google Scholar
  16. 16.
    N. N. Karaush, R. R. Valiev, G. V. Baryshnikov, et al., Chem. Phys., 459, 65–71 (2015).CrossRefGoogle Scholar
  17. 17.
    S. J. Strickler and R. A. Berg, Chem. Phys. Lett., 40, No. 6, 814 (1964).Google Scholar
  18. 18.
    V. Ya. Artyukhov, A. I. Galeeva, G. V. Mayer, and V. V. Ponomarev, Opt. Spektrosk., 82, No. 4, 563–566 (1997).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. V. Konyshev
    • 1
    Email author
  • V. N. Cherepanov
    • 1
  • G. V. Baryshnikov
    • 1
  • R. R. Valiev
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations