Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1695–1701 | Cite as

Elastic Properties of Lithium and Sodium Amides

  • E. B. KaizerEmail author
  • N. G. Kravchenko
  • A. S. Poplavnoi
Article
  • 8 Downloads

This paper presents the optimization of the structural parameters of tetragonal and orthorhombic crystals α-LiNH2 and α-NaNH2 and computation of elastic constants and flexibility coefficients using the all-electron implementation of the Gaussian and augmented plane wave density functional method. The obtained elastic constants satisfy all conditions of mechanical stability of LiNH2 and α-NaNH2 crystals. From the viewpoint of elastic properties, α-LiNH2 crystal is isotropic, while α-NaNH2 crystal is rather anisotropic. Anisotropy under compression in α-NaNH2 crystal is higher than that under shear. The former is brittle, the latter is more plastic.

Keywords

lithium amide sodium amide elastic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P. Tarasov, M. V. Lototskii, and V. A. Yartys’, Ros. Khim. Zhurn., 50, No. 6, 34-48 (2006).Google Scholar
  2. 2.
    V. M. Azhazha, M. A. Tikhonovskii, A. G. Shepelev, et al., Voprosy Atomnoi Nauki i Tekhniki, 15, No. 1, 145 (2006).Google Scholar
  3. 3.
    Yan Zhong, Huai-Ying Zhou, Chao-Hao Hu, et al., J. Phys. Chem., 116, 8387–8393 (2012).CrossRefGoogle Scholar
  4. 4.
    R. Juza and K. Opp, Z. Anorg. Allg. Chemie, 266, 313 (1951).CrossRefGoogle Scholar
  5. 5.
    J. B. Yang, X. D. Zhou, W. J. James, and W. B. Yelon, Appl. Phys. Lett., 88, 041914 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    R. Chellappa, D. Chandra, M. Somayazulu, et al., J. Phys. Chem. B, 111, 10785–10789 (2007).CrossRefGoogle Scholar
  7. 7.
    X. Huang, D. Li, F. Li, et al., J. Phys. Chem. C, 116, 9744–9749 (2012).CrossRefGoogle Scholar
  8. 8.
    H. Yamawaki, H. Fujihisa, Y. Gotoh, and S. Nakano, J. Phys. Chem. B, 118, 9991–9996 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Zhong, H. Zhou, C. Hu, et al., J. Alloy. Compd., 544, 129–133 (2012).CrossRefGoogle Scholar
  10. 10.
    D. Prasad, N. W. Ashcroft, and R. Hoffmann, J. Phys. Chem. A, 116, 10027–10036 (2012).CrossRefGoogle Scholar
  11. 11.
    Oganov’s Lab, Computational Materials Discovery Laboratory; http://uspex.stonybrook.edu/uspex.html.
  12. 12.
    A. R. Oganov and C. W. Glass, J. Chem. Phys., 124, 244704 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    M. Nagib, H. Kistrup, and H. Jacobs, Atomkernenergie, 26, 87–90 (1975).Google Scholar
  14. 14.
    A. Liu and Y. Song, J. Phys. Chem. B, 115, 7 (2011).CrossRefGoogle Scholar
  15. 15.
    R. Juza, H. Jacobs, and W. Klose, Z. Anorg. Allg. Chem., 338, 171–178 (1965).CrossRefGoogle Scholar
  16. 16.
    H. Jacobs and E. Osten, Z. Naturforsch. B, 31, 385–386 (1976).CrossRefGoogle Scholar
  17. 17.
    K. R. Babu and G. Vaitheeswaran, J. Phys. Condens. Matter, 26, 235503 (2014).CrossRefGoogle Scholar
  18. 18.
    R. Dovesi, R. Orlando, A. Erba, et al., Int. J. Quantum Chem., 114, 1287 (2014).CrossRefGoogle Scholar
  19. 19.
    R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 14 User’s Manual. Torino: University of Torino, 2014.Google Scholar
  20. 20.
    Furio Corà, Maria Alfredsso, Giuseppe Mallia, et al., Structure and Bonding. 113, 171–232 (2004).CrossRefGoogle Scholar
  21. 21.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623 (1994).CrossRefGoogle Scholar
  22. 22.
    A. D. Becke, Phys. Rev. A, 38, 3098–3100 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    M. F. Peintinger, D. V. Oliveira, and T. J. Bredow, Comput. Chem., 34, No. 6, 451 (2013).CrossRefGoogle Scholar
  25. 25.
    R. Dovesi, M. Causa, R. Orlando, and C. Roetti, J. Chem. Phys., 92, 7402 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    P. Ravindran, L. Fast, P. A. Korzhavyi, and B. Johansson, J. Appl. Phys., 84, No. 9, 1 (1998).CrossRefGoogle Scholar
  27. 27.
    H. Zhai, X. Li, and J. Du, Mater. Trans. 53, No. 7, 1247–1251 (2012).CrossRefGoogle Scholar
  28. 28.
    N. A. Alfutov, P. A. Zinov'ev, and B. G. Popov, Analysis of Multi-Layer Plates and Composite Coatings [in Russian], Mashinostroenie, Moscow (1984).Google Scholar
  29. 29.
    I. Shivakumar, Universal Elastic Anisotropy Index, Phys. Rev. Lett., 101, 055504 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. B. Kaizer
    • 1
    Email author
  • N. G. Kravchenko
    • 1
  • A. S. Poplavnoi
    • 1
  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations