Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1674–1680 | Cite as

A Multi-Layer Composite Based on the 3Ni–Al System Produced by a Combined Deformation Treatment

  • I. A. Ditenberg
  • M. A. Korchagin
  • V. V. Melnikov
  • A. N. Tyumentsev
  • K. V. Grinyaev
  • I. V. Smirnov
  • A. S. Tsverova
  • I. I. Sukhanov
CONDENSED-STATE PHYSICS
  • 4 Downloads

Using combined deformation processing, including preliminary mechanical activation followed by consolidation via high-pressure torsion, a multi-layer nanocomposite based on nickel and aluminum is manufactured. The influence of the duration of mechanical activation on its microstructure parameters is investigated by the X-ray diffraction analysis and scanning and transmission electron microscopy. It is found out that nanostructuring of the multi-layer nanocomposite during its manufacture ensures the formation of a high density of phase and grain boundaries. It is shown that this structural transformation is accompanied by an intense strengthening effect.

Keywords

nickel–aluminum powder system mechanical activation high-pressure torsion scanning and transmission electron microscopy XRD analysis microstructure multi-layer nanocomposite microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Misra, J. P. Hirth, and R. G. Hoagland, Acta Mater., 53, 4817–4824 (2005).CrossRefGoogle Scholar
  2. 2.
    E. G. Fu, Nan Li, A. Misra, et al., Mater. Sci. Eng. A, 493, 283–287 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Noro, A. S. Ramos, and M. T. Vieira, Intermetallics, 16, No. 9, 1061–1065 (2008).CrossRefGoogle Scholar
  4. 4.
    M. I. Karpov, V. I. Vnukov, K. G. Volkov, et al., Materialoved., No. 1, 48–53 (2004).Google Scholar
  5. 5.
    B. Z. Cui, Y. Xin, and K. Han, Scripta Mater., 56, 879–882 (2007).CrossRefGoogle Scholar
  6. 6.
    Á. Révész, Zs. Kánya, T. Verebélyi, et al., J. Alloys Compounds, 504, No. 1, 83–88 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Romankov, I. V. Shchetinin, Y. C. Park, et al., Mater. Lett. 85, 109–112 (2012).CrossRefGoogle Scholar
  8. 8.
    A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Phys. Mesomech., 16, No. 4, 319–334 (2013).CrossRefGoogle Scholar
  9. 9.
    A. N. Tyumentsev and I. A. Ditenberg, Russ. Phys. J., 54, No. 9, 977–988 (2012).CrossRefGoogle Scholar
  10. 10.
    A. N. Tyumentsev, I. A. Ditenberg, A. V. Korznikov, and E. A. Korznikova, Phys. Mesomech., 16, No. 3, 239–247 (2013).CrossRefGoogle Scholar
  11. 11.
    A. V. Korznikov, G. Tram, O. Dimitrov, et al., Acta Mater., 49, 663–671 (2001).CrossRefGoogle Scholar
  12. 12.
    L. I. Shevtsova, M. A. Korchagin, A. Thömmes, et al., Adv. Mater. Res., 1040, 772–777 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. A. Ditenberg
    • 1
    • 2
  • M. A. Korchagin
    • 3
  • V. V. Melnikov
    • 1
    • 4
  • A. N. Tyumentsev
    • 1
    • 2
    • 4
  • K. V. Grinyaev
    • 1
    • 2
    • 4
  • I. V. Smirnov
    • 1
    • 2
    • 4
  • A. S. Tsverova
    • 1
  • I. I. Sukhanov
    • 1
    • 4
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  4. 4.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia

Personalised recommendations