Russian Physics Journal

, Volume 61, Issue 9, pp 1597–1602 | Cite as

Energy of a Two-Dimensional Helium Atom in an Excited State

  • V. V. SkobelevEmail author
  • S. V. Kopylov

Using perturbation theory methods and a variational method, we have calculated the energy of a twodimensional helium atom in its lower excited states, this energy showing itself to be practically independent of the specific characteristics of these excited states; this, together with the known value of the energy in the ground state, found earlier by one of the authors, presents the fundamental possibility of determining the frequencies of the main spectral lines of such an atom, which can be checked experimentally.


energy two-dimensional helium atom 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer-Verlag, Berlin (1957).CrossRefGoogle Scholar
  2. 2.
    Gorlitz A. et al., Phys. Rev. Lett., 87, 130402 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Skobelev, Zh. Eksp. Teor. Fiz., 152, No. 12, 1241 (2017).CrossRefGoogle Scholar
  4. 4.
    B. Zaslow and C. E. Zandler, Amer. J. Phys., 35, 1118 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    A. Cisneros and N. V. McIntosh, J. Math. Phys., 10, 277 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Sokolov, Yu. M. Loskutov, and I. M. Ternov, Quantum Mechanics, Uchpedgiz, Moscow (1962).zbMATHGoogle Scholar
  7. 7.
    E. A. Hylleraas, Z. Phys., 63, 291 (1930).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Hylleraas, Z. Phys., 63, 771 (1930).ADSCrossRefGoogle Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, London (1977).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations